2) So sánh A và B mà không tính giá trị của chúng:
a) A = 2021.2023 và B = 2022.2022
b) A = 2 mũ 30 và B = 3 mũ 20
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(M=\dfrac{30-2^{20}}{2^{18}}=\dfrac{2.15-2^{20}}{2^{18}}=\dfrac{15}{2^{17}}-2^2=\dfrac{15}{2^{17}}-4< 0\left(\dfrac{15}{2^{17}}< 1\right)\)
\(N=\dfrac{3^5}{1^{2021}+2^3}=\dfrac{3^5}{9}=\dfrac{3^5}{3^2}=3^3=27\)
\(\Rightarrow M< N\)
Bài 3 :
a) \(t^2+5t-8\) khi \(t=2\)
\(=5^2+2.5-8\)
\(=25+10-8\)
\(=27\)
b) \(\left(a+b\right)^2-\left(b-a\right)^3+2021\left(1\right)\)
\(\left\{{}\begin{matrix}a=5\\b=a+1=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a+b=11\\b-a=1\end{matrix}\right.\)
\(\left(1\right)=11^2-1^3+2021=121-1+2021=2141\)
c) \(x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3\left(1\right)\)
\(\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\) \(\Rightarrow x-y=1\)
\(\left(1\right)=1^3=1\)
a>b nhé anh vì 2022.2022 nó đã lớn hơn 2021.2023 rồi ạ
k cho em nếu đúng nhé
chúc anh học tốt
Ta có:
A=2022x2022
=2022x(2023-1)
=2022 x 2023 - 2022 x 1
=2022x2024-2021
Lại có:
B = 2021 . 2023
B = ( 2022 - 1 ) . 2023
B = 2023 . 2022 - 2023 . 1
B = 2023 . 2022 - 2023
Ta thấy: 2022x2024-2021 > 2023x2022-2023
Suy ra A > B.
Bài 1:
a) 02002 < 02023
b) 20220 = 20230
c) 549 < 5510
d) ( 4 + 5 )3 > 42 + 52
đ) 92 - 32 > ( 9 - 3 )2
Bài 2:
a) 32 x 43 - 32 + 333
= 9 x 64 - 9 + 333
= 576 - 9 + 333
= 567 + 333
= 900
b) 5 x 43 + 24 x 5 + 410
= 5 x 64 + 24 x 5 + 1
= 5 x ( 64 + 24 ) + 1
= 5 x 88 + 1
= 440 + 1
= 441
c) 23 x 42 + 32 x 5 - 40 x 12023
= 8 x 16 + 9 x 5 - 40 x 1
= 128 + 45 - 40
= 133
Bài 1 :
a) \(0^{2002}=0;0^{2023}=0\Rightarrow0^{2002}=0^{2023}\)
b) \(2022^0=1;2023^0=1\Rightarrow2022^0=2023^0\)
c) \(54^9< 55^9;55^9< 55^{10}\Rightarrow54^9< 55^{10}\)
d) \(\left(4+5\right)^3>\left(4+5\right)^2;\left(4+5\right)^2>4^2+5^2\Rightarrow\left(4+5\right)^3>4^2+5^2\)
đ) \(9^2-3^2=81-9=82;\left(9-3\right)^2=6^2=36\Rightarrow9^2-3^2>\left(9-3\right)^2\)
Bài 1 : Viết các tổng sau thành bình phương của 1 số tự nhiên
A. 5 3 + 62 + 8
B . 2 + 32+ 42 + 132
Bài 2 : So sánh các số sau
A . 320 và 274
Ta có : 274 = (32)4 = 38
Vì 20 < 8 => 320 > 274
( Những câu còn lại tương tự ) - Tự làm nhé ! Mình bận ~
# Dương
A = 1 + 2 + 22 + ... + 220
2A = 2 + 22 + 23 + ... + 221
2A - A = (2 + 22 + 23 + ... + 221) - (1 + 2 + 22 + ... + 220)
A = 221 - 1 < 221 = B
=> A < B
A = 1 + 2 + 22
+ ... + 220
2A = 2 + 22
+ 23
+ ... + 221
2A - A = (2 + 22
+ 23
+ ... + 221) - (1 + 2 + 22
+ ... + 220)
A = 221
- 1 < 221
= B
=> A < B
k cho mk nha $_$
:D
a,320 và 274
320=(35)4=2434>274
Vậy 320>274
b,534 và 25x530
25x530=52x530=532<534
=>534>25x530.
c,224và 266
224=(24)6=166<266
=>224<266
d,1030và 450
1030=(103)10=100010
450=(45)10=102410
Vì 100010<102410nên 1030<450.
e,2300và 3200
2300=(23)100=8100
3200=(32)100=9100
Vì 8100<9100 nên 2300<3200
Ta có: a = 2002.2002 = 2002.(2000 + 2) = 2002.2000 + 2002.2
b = 2000.2004 = 2000.(2002 + 2) = 2000.2002 + 2000.2
Do 2002. 2000 = 2000. 2002 và 2002.2 > 2000.2
Nên a > b
1998 =1998.(1996+2)=1995.1996+1998.2
1996.2000=1996.(+2)=1996.1995+1996.2
Suy ra A>B
mấy bài sau làm tương tự
b,A=1998x1998
A=(1996+2)x1998
A=1996x1998+2x1998
B=1996x2000
B=1996x(1998+2)
B=1996x1998+2x1996
vì 2x1996<2x1998=>A>B
a) Ta có:
\(A=2021\cdot2023\)
\(A=\left(2022-1\right)\cdot\left(2022+1\right)\)
\(A=2022^2+2022-2022-1\)
\(A=2022^2-1\)
Ta thấy: \(2022^2-1< 2022^2\)
Vậy: \(A< B\)
b) Ta có:
\(A=2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(B=3^{20}=\left(3^2\right)^{10}=9^{10}\)
Ta thấy: \(8^{10}< 9^{10}\)
Vậy: \(A< B\)