K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2017

a)\(\left|3x+18\right|+\left|4y-28\right|\le0\)

           Vì \(\left|3x+18\right|\ge0;\left|4y-28\right|\ge0\)

      Nên PT chỉ xảy ra khi \(\left|3x+18\right|+\left|4y-28\right|=0\)

\(\Rightarrow\hept{\begin{cases}3x+18=0\\4y-28=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-6\\y=7\end{cases}}\)

                Vậy để \(\left|3x+18\right|+\left|4y-28\right|\le0\) thì x=-6 và y=7

b)Mk bị liệt dấu lớn nên ko làm đc bn thông cảm nha

1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)4. Tìm số nguyên \(x\)sao...
Đọc tiếp

1. Liệt kê các phần tử của tập hợp P các số nguyên \(x\)sao cho \(0\le\frac{x}{5}< 2\)

2. Tìm \(x\)nguyên để phân số sau là số nguyên \(\frac{13}{x-15}\)

3. Cho B= \(\frac{12}{\left(2.4\right)^2}+\frac{20}{\left(4.6\right)^2}+...+\frac{388}{\left(96.98\right)^2}+\frac{396}{\left(98.100\right)^2}\). Hãy so sánh \(B\)với \(\frac{1}{4}\)

4. Tìm số nguyên \(x\)sao cho: \(\frac{x-2}{27}+\frac{x-3}{26}+\frac{x-4}{25}+\frac{x-5}{24}+\frac{x-44}{5}=1\)

5. Tìm các số nguyên dương \(x,y\)thỏa mãn:\(\frac{x}{2}+\frac{x}{y}-\frac{3}{2}=\frac{10}{y}\)

6. Tìm các giá trị nguyên của \(n\) để \(n+8\)chia hết cho \(n+7\)

7. Tìm phân số lớn nhất sao cho khi chia các phân số \(\frac{28}{15};\frac{21}{10};\frac{49}{84}\)cho nó ta đều được thương là các số tự nhiên 

8. Cho phân số A= \(\frac{-3}{n-3}\left(n\inℤ\right)\)

a) Tìm số nguyên \(n\)để \(A\)là phân số 

b) Tìm số nguyên \(n\)để \(A\)là số nguyên 

9.Tìm các số nguyên \(x\)sao cho phân số \(\frac{4}{1-3x}\)có giá trị là số nguyên

10. Tìm tập hợp các số nguyên \(a\)là bội của 3:

\((\frac{-25}{12}.\frac{7}{29}+\frac{-25}{12}.\frac{22}{29}).\frac{12}{5}< a\le2\frac{1}{3}+3\frac{2}{3}\)

 

0
12 tháng 1 2019

🤦‍♀️🤦‍♀️

14 tháng 8 2016

Bài 1:

Ta có : \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)

\(\Leftrightarrow\left[\left(x^2-1\right)\left(x^2-10\right)\right].\left[\left(x^2-4\right)\left(x^2-7\right)\right]< 0\)

\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)

Đặt \(y=x^4-11x^2+19\), ta có : \(\left(y-9\right)\left(y+9\right)< 0\)

\(\Leftrightarrow y^2< 81\Leftrightarrow-9< y< 9\) \(\Leftrightarrow\hept{\begin{cases}y>-9\left(1\right)\\y< 9\left(2\right)\end{cases}}\)

Giải (1) được : \(x^4-11x^2+28>0\) \(\Leftrightarrow\left(x^2-7\right)\left(x^2-4\right)>0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2>7\\x^2< 4\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>\sqrt{7}\\x< -\sqrt{7}\end{cases}}\)hoặc  \(-2< x< 2\)

Giải (2) được : 

\(\Leftrightarrow\hept{\begin{cases}x^2< 1\\x^2>10\end{cases}}\)(loại)  hoặc \(1< x^2< 10\)(nhận)

\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 10\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x< -1\\x>1\end{cases}}\)và \(-\sqrt{10}< x< \sqrt{10}\)

\(\Rightarrow\orbr{\begin{cases}-\sqrt{10}< x< -1\\1< x< \sqrt{10}\end{cases}}\)

Kết hợp (1) và (2) : \(-2< x< -1\);;\(1< x< 2\)\(\sqrt{7}< x< \sqrt{10}\)\(-\sqrt{10}< x< -\sqrt{7}\)

Suy ra các giá trị nguyên của x là : \(x\in\left\{-3;3\right\}\)

14 tháng 8 2016

Bài 1: 

Có: \(x^2-10< x^2-7< x^2-4< x^2-1\)

Để tích trên < 0

\(\left(x^2-1\right);\left(x^2-4\right);\left(x^2-7\right)\)cùng dương và \(\left(x^2-10\right)\)âm

\(\Rightarrow x^2-10< 0\)\(x^2-7>0\)

\(\Rightarrow x^2< 10\)và \(x^2>7\)

\(\Rightarrow7< x^2< 10\)

\(\Rightarrow x^2=9\Rightarrow x=+;-3\)

3 tháng 7 2019

a) |-x + 2| = -|y + 9|

=> |-x + 2| + |y + 9| = 0

Ta có: |-x + 2| \(\ge\)\(\forall\)x

|y + 9| \(\ge\)\(\forall\)y

=> |-x + 2| + |y + 9| \(\ge\)\(\forall\)x; y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}-x+2=0\\y+9=0\end{cases}}\) => \(\hept{\begin{cases}x=2\\y=-9\end{cases}}\)

Vậy ...

b) |3x + 4| + |2y - 10| \(\le\)0

Ta có: |3x +  4| \(\ge\)\(\forall\)x

        |2y - 10| \(\ge\)\(\forall\)y

=> |3x + 4| + |2y - 10| \(\ge\) 0 \(\forall\)x;y

Dấu "=" xảy ra khi : \(\hept{\begin{cases}3x+4=0\\2y-10=0\end{cases}}\) <=> \(\hept{\begin{cases}3x=-4\\2y=10\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{4}{3}\\y=5\end{cases}}\)

vậy ...

c) |-x - 3| + |y + 7| < 0

Ta có: |-x - 3| \(\ge\)\(\forall\)x

      |y + 7| \(\ge\)\(\forall\)y

=> |-x - 3| + |y + 7| \(\ge\)\(\forall\)x; y

=> ko có giá trị x, y thõa mãn đb

NV
30 tháng 4 2021

- Với \(m=0\Rightarrow x=-2\) thỏa mãn

- Với \(m\ne0\)

\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)

Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương

Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ

\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)

\(\Rightarrow m=2k\left(k+1\right)\)

Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ

21 tháng 1 2017

a) \(2x^2+y^2+6=4\left(x-y\right)\)

\(\Leftrightarrow2x^2+y^2+6-4x+4y=0\)

\(\Leftrightarrow\left(2x^2-4x+2\right)+\left(y^2+4y+4\right)=0\)

\(\Leftrightarrow2\left(x-1\right)^2+\left(y+2\right)^2=0\)

\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

23 tháng 1 2017

b/ x2(y + 2) + 1 = y2

<=> x2(y + 2) + 1 = (y + 2)(y - 2) + 4

<=> (y + 2)(x2 + 2 - y) = 3

Làm tiếp nhé

10 tháng 6 2016

Lần sau bạn post riêng từng bài bạn nhé! để ai làm được bài nào thì làm! 2 bài dài quá!!!

1. Giải phương trình:

\(\left|x^2+x+1\right|+\left|3x^2+x-4\right|=x^2+2\)(1)

  • \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\forall x\Rightarrow\left|x^2+x+1\right|=x^2+x+1\)

(1) \(\Leftrightarrow x^2+x+1+\left|3x+4\right|\cdot\left|x-1\right|=x^2+2\)

\(\Leftrightarrow\left|3x+4\right|\cdot\left|x-1\right|=1-x\)(2)

  • Nếu x>1 thì không phải là nghiệm của (2) vì VP(2)>=0 còn VT(2)<0
  • Nếu x<=1 thì |x-1| = 1-x. Do đó:

(2) \(\Leftrightarrow\left|3x+4\right|\cdot\left(1-x\right)=1-x\Leftrightarrow\left(1-x\right)\left(\left|3x+4\right|-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}1-x=0\\\left|3x+4\right|=1\end{cases}\Rightarrow x=1;x=-1;x=-\frac{5}{3}\left(TMDK:x\le1\right)}\)

Vậy PT có 3 nghiệm là: -5/3;-1;1.

b) Tìm các số nguyên x để:

\(N=x^2-6x-6\)là số chính phương.

\(N=x^2-6x+9-15=\left(x-3\right)^2-15\)

N là số chính phương nên: \(N=y^2=\left(x-3\right)^2-15\Rightarrow\left(x-3\right)^2-y^2=15\)

\(\Rightarrow\left(x-3-y\right)\left(x-3+y\right)=15\)

\(\Rightarrow\left(x-y-3\right)\left(x+y-3\right)=15\)

Mà x;y thuộc Z nên (x-y-3) và (x+y-3) là ước của 15.

Ta có bảng sau:

x-y-3x+y-3x-yx+yyxGhi chú
-15-1-1227-5TM
-5-3-201-1TM
-3-50-2-1-1TM
-1-152-12-7-5TM
115418711TM
356817TM
5386-17TM
151184-711TM

Kết luận:Có 4 giá trị của x là: -5;-1;7;11 thì N là số chính phương.

11 tháng 6 2016

Đinh Thùy Linh Mình xem qua bài giải 1) của bạn, hình như bạn nhầm chỗ này : 

\(\left|3x+4\right|.\left|x-1\right|=1-x\)

  • Nếu \(x>1\)ta có VT >0 , VP < 0  suy ra điều vô lí
  • Nếu \(x\le1\)......................
NV
18 tháng 4 2021

1.

\(y'=12x+\dfrac{4}{x^2}\)

2.

\(y'=\dfrac{3}{\left(-x+1\right)^2}\)

3.

\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)

4.

\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)

\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)

5.

\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)

6.

\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)

Bài làm: 

Giả sử \(b>c\)

Với mọi \(x\)ta có \(\left(x+a\right)\left(x-4\right)-7=\left(x+b\right)\left(x+c\right)\left(1\right)\)

Với \(x=4\)ta được \(\left(x+b\right)\left(x+c\right)=\left(4+a\right)\cdot0-7=-7\)

Vì \(b,c\in Z\)và \(b>c\)và chúng đề có vai trò như nhau nên ta có hai trường hợp sau:

Trường hợp 1:  \(\hept{\begin{cases}b+4=1\\c+4=-7\end{cases}\Rightarrow\hept{\begin{cases}b=-3\\c=-11\end{cases}}}\). Thay vào \(\left(1\right)\)ta được

\(\left(x+a\right)\left(x-4\right)-7=\left(x-3\right)\left(x-11\right)\)

\(\Leftrightarrow x^2+\left(a-4\right)\cdot x-\left(4a+7\right)=x^2-14x+33\)

\(\Leftrightarrow\left(a-4\right)\cdot x-\left(4a+7\right)=-14x+33\).

\(\Leftrightarrow a-4=-14\)và \(4a+7=-33\Leftrightarrow a=-10\)

Trường hợp 2: \(\hept{\begin{cases}b+4=7\\c+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}b=3\\c=-5\end{cases}}}\).Giải tương tự như trên ta được \(a=2\)

Vậy \(\orbr{\begin{cases}a=-10;b=-3;c=-11\\a=-10;b=-11;c=3\end{cases}}\)hoặc \(\orbr{\begin{cases}a=2;b=3;c=-5\\a=2;b=-5;c=3\end{cases}}\)

Bạn nhé khi mk giải thì mk chỉ có 2 trường hợp và ra kết quả a,b,c chỉ có hai nhưng khi mình kết luận mình đã kl đến 4 đáp số bởi vì như bạn đã đọc mk đã giả sử b>c nên cả trong hai trường hợp mk chỉ xét b>c thôi vd: ở trường hợp 1 mk chỉ xét b+4=1; c+4=-7 thì suy ra b=-3;c=-11 chứ mình không có xét th b+4=-7;c+4=1 nhé !

                                                                     ~~~~~~~~ GOOD LUCK ~~~~~~~~~~~~~~`