Tìm các số nguyên x,y
a)/3x+18/+/4y-28/\(\le0\)
b)\(\left(x^2-4\right)\left(x^2-25\right)< 0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có : \(\left(x^2-1\right)\left(x^2-4\right)\left(x^2-7\right)\left(x^2-10\right)< 0\)
\(\Leftrightarrow\left[\left(x^2-1\right)\left(x^2-10\right)\right].\left[\left(x^2-4\right)\left(x^2-7\right)\right]< 0\)
\(\Leftrightarrow\left(x^4-11x^2+10\right)\left(x^4-11x^2+28\right)< 0\)
Đặt \(y=x^4-11x^2+19\), ta có : \(\left(y-9\right)\left(y+9\right)< 0\)
\(\Leftrightarrow y^2< 81\Leftrightarrow-9< y< 9\) \(\Leftrightarrow\hept{\begin{cases}y>-9\left(1\right)\\y< 9\left(2\right)\end{cases}}\)
Giải (1) được : \(x^4-11x^2+28>0\) \(\Leftrightarrow\left(x^2-7\right)\left(x^2-4\right)>0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2>7\\x^2< 4\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x>\sqrt{7}\\x< -\sqrt{7}\end{cases}}\)hoặc \(-2< x< 2\)
Giải (2) được :
\(\Leftrightarrow\hept{\begin{cases}x^2< 1\\x^2>10\end{cases}}\)(loại) hoặc \(1< x^2< 10\)(nhận)
\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 10\end{cases}}\) \(\Leftrightarrow\orbr{\begin{cases}x< -1\\x>1\end{cases}}\)và \(-\sqrt{10}< x< \sqrt{10}\)
\(\Rightarrow\orbr{\begin{cases}-\sqrt{10}< x< -1\\1< x< \sqrt{10}\end{cases}}\)
Kết hợp (1) và (2) : \(-2< x< -1\);;\(1< x< 2\); \(\sqrt{7}< x< \sqrt{10}\); \(-\sqrt{10}< x< -\sqrt{7}\)
Suy ra các giá trị nguyên của x là : \(x\in\left\{-3;3\right\}\)
Bài 1:
Có: \(x^2-10< x^2-7< x^2-4< x^2-1\)
Để tích trên < 0
: \(\left(x^2-1\right);\left(x^2-4\right);\left(x^2-7\right)\)cùng dương và \(\left(x^2-10\right)\)âm
\(\Rightarrow x^2-10< 0\)và\(x^2-7>0\)
\(\Rightarrow x^2< 10\)và \(x^2>7\)
\(\Rightarrow7< x^2< 10\)
\(\Rightarrow x^2=9\Rightarrow x=+;-3\)
a) |-x + 2| = -|y + 9|
=> |-x + 2| + |y + 9| = 0
Ta có: |-x + 2| \(\ge\)0 \(\forall\)x
|y + 9| \(\ge\)0 \(\forall\)y
=> |-x + 2| + |y + 9| \(\ge\)0 \(\forall\)x; y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}-x+2=0\\y+9=0\end{cases}}\) => \(\hept{\begin{cases}x=2\\y=-9\end{cases}}\)
Vậy ...
b) |3x + 4| + |2y - 10| \(\le\)0
Ta có: |3x + 4| \(\ge\)0 \(\forall\)x
|2y - 10| \(\ge\)0 \(\forall\)y
=> |3x + 4| + |2y - 10| \(\ge\) 0 \(\forall\)x;y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}3x+4=0\\2y-10=0\end{cases}}\) <=> \(\hept{\begin{cases}3x=-4\\2y=10\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{4}{3}\\y=5\end{cases}}\)
vậy ...
c) |-x - 3| + |y + 7| < 0
Ta có: |-x - 3| \(\ge\)0 \(\forall\)x
|y + 7| \(\ge\)0 \(\forall\)y
=> |-x - 3| + |y + 7| \(\ge\)0 \(\forall\)x; y
=> ko có giá trị x, y thõa mãn đb
- Với \(m=0\Rightarrow x=-2\) thỏa mãn
- Với \(m\ne0\)
\(\Delta'=\left(m-1\right)^2-m\left(m-4\right)=2m+1\)
Pt có nghiệm hữu tỉ khi và chỉ khi \(2m+1\) là số chính phương
Mà \(2m+1\) lẻ \(\Rightarrow2m+1\) là SCP lẻ
\(\Rightarrow2m+1=\left(2k+1\right)^2\) với \(k\in N\)
\(\Rightarrow m=2k\left(k+1\right)\)
Vậy với \(m=2k\left(k+1\right)\) (với \(k\in N\)) thì pt có nghiệm hữu tỉ
Tìm các cặp số nguyên x,y biết
a,\(2x^2+y^2+6=4\left(x-y\right)\)
b,\(x^2\left(y+2\right)+1=y^2\)
a) \(2x^2+y^2+6=4\left(x-y\right)\)
\(\Leftrightarrow2x^2+y^2+6-4x+4y=0\)
\(\Leftrightarrow\left(2x^2-4x+2\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow2\left(x-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
b/ x2(y + 2) + 1 = y2
<=> x2(y + 2) + 1 = (y + 2)(y - 2) + 4
<=> (y + 2)(x2 + 2 - y) = 3
Làm tiếp nhé
Lần sau bạn post riêng từng bài bạn nhé! để ai làm được bài nào thì làm! 2 bài dài quá!!!
1. Giải phương trình:
\(\left|x^2+x+1\right|+\left|3x^2+x-4\right|=x^2+2\)(1)
(1) \(\Leftrightarrow x^2+x+1+\left|3x+4\right|\cdot\left|x-1\right|=x^2+2\)
\(\Leftrightarrow\left|3x+4\right|\cdot\left|x-1\right|=1-x\)(2)
(2) \(\Leftrightarrow\left|3x+4\right|\cdot\left(1-x\right)=1-x\Leftrightarrow\left(1-x\right)\left(\left|3x+4\right|-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}1-x=0\\\left|3x+4\right|=1\end{cases}\Rightarrow x=1;x=-1;x=-\frac{5}{3}\left(TMDK:x\le1\right)}\)
Vậy PT có 3 nghiệm là: -5/3;-1;1.
b) Tìm các số nguyên x để:
\(N=x^2-6x-6\)là số chính phương.
\(N=x^2-6x+9-15=\left(x-3\right)^2-15\)
N là số chính phương nên: \(N=y^2=\left(x-3\right)^2-15\Rightarrow\left(x-3\right)^2-y^2=15\)
\(\Rightarrow\left(x-3-y\right)\left(x-3+y\right)=15\)
\(\Rightarrow\left(x-y-3\right)\left(x+y-3\right)=15\)
Mà x;y thuộc Z nên (x-y-3) và (x+y-3) là ước của 15.
Ta có bảng sau:
x-y-3 | x+y-3 | x-y | x+y | y | x | Ghi chú |
-15 | -1 | -12 | 2 | 7 | -5 | TM |
-5 | -3 | -2 | 0 | 1 | -1 | TM |
-3 | -5 | 0 | -2 | -1 | -1 | TM |
-1 | -15 | 2 | -12 | -7 | -5 | TM |
1 | 15 | 4 | 18 | 7 | 11 | TM |
3 | 5 | 6 | 8 | 1 | 7 | TM |
5 | 3 | 8 | 6 | -1 | 7 | TM |
15 | 1 | 18 | 4 | -7 | 11 | TM |
Kết luận:Có 4 giá trị của x là: -5;-1;7;11 thì N là số chính phương.
Đinh Thùy Linh Mình xem qua bài giải 1) của bạn, hình như bạn nhầm chỗ này :
\(\left|3x+4\right|.\left|x-1\right|=1-x\)
1.
\(y'=12x+\dfrac{4}{x^2}\)
2.
\(y'=\dfrac{3}{\left(-x+1\right)^2}\)
3.
\(y'=\dfrac{2x-3}{2\sqrt{x^2-3x+4}}\)
4.
\(y=\dfrac{x^3+3x^2-x-3}{x-4}\)
\(y'=\dfrac{\left(3x^2+6x-1\right)\left(x-4\right)-\left(x^3+3x^2-x-3\right)}{\left(x-4\right)^2}=\dfrac{2x^3-9x^2-24x+7}{\left(x-4\right)^2}\)
5.
\(y'=-\dfrac{4x-3}{\left(2x^2-3x+5\right)^2}\)
6.
\(y'=\sqrt{x^2-1}+\dfrac{x\left(x+1\right)}{\sqrt{x^2-1}}\)
Bài làm:
Giả sử \(b>c\)
Với mọi \(x\)ta có \(\left(x+a\right)\left(x-4\right)-7=\left(x+b\right)\left(x+c\right)\left(1\right)\)
Với \(x=4\)ta được \(\left(x+b\right)\left(x+c\right)=\left(4+a\right)\cdot0-7=-7\)
Vì \(b,c\in Z\)và \(b>c\)và chúng đề có vai trò như nhau nên ta có hai trường hợp sau:
Trường hợp 1: \(\hept{\begin{cases}b+4=1\\c+4=-7\end{cases}\Rightarrow\hept{\begin{cases}b=-3\\c=-11\end{cases}}}\). Thay vào \(\left(1\right)\)ta được
\(\left(x+a\right)\left(x-4\right)-7=\left(x-3\right)\left(x-11\right)\)
\(\Leftrightarrow x^2+\left(a-4\right)\cdot x-\left(4a+7\right)=x^2-14x+33\)
\(\Leftrightarrow\left(a-4\right)\cdot x-\left(4a+7\right)=-14x+33\).
\(\Leftrightarrow a-4=-14\)và \(4a+7=-33\Leftrightarrow a=-10\)
Trường hợp 2: \(\hept{\begin{cases}b+4=7\\c+4=-1\end{cases}\Leftrightarrow\hept{\begin{cases}b=3\\c=-5\end{cases}}}\).Giải tương tự như trên ta được \(a=2\)
Vậy \(\orbr{\begin{cases}a=-10;b=-3;c=-11\\a=-10;b=-11;c=3\end{cases}}\)hoặc \(\orbr{\begin{cases}a=2;b=3;c=-5\\a=2;b=-5;c=3\end{cases}}\)
Bạn nhé khi mk giải thì mk chỉ có 2 trường hợp và ra kết quả a,b,c chỉ có hai nhưng khi mình kết luận mình đã kl đến 4 đáp số bởi vì như bạn đã đọc mk đã giả sử b>c nên cả trong hai trường hợp mk chỉ xét b>c thôi vd: ở trường hợp 1 mk chỉ xét b+4=1; c+4=-7 thì suy ra b=-3;c=-11 chứ mình không có xét th b+4=-7;c+4=1 nhé !
~~~~~~~~ GOOD LUCK ~~~~~~~~~~~~~~`
a)\(\left|3x+18\right|+\left|4y-28\right|\le0\)
Vì \(\left|3x+18\right|\ge0;\left|4y-28\right|\ge0\)
Nên PT chỉ xảy ra khi \(\left|3x+18\right|+\left|4y-28\right|=0\)
\(\Rightarrow\hept{\begin{cases}3x+18=0\\4y-28=0\end{cases}\Rightarrow}\hept{\begin{cases}x=-6\\y=7\end{cases}}\)
Vậy để \(\left|3x+18\right|+\left|4y-28\right|\le0\) thì x=-6 và y=7
b)Mk bị liệt dấu lớn nên ko làm đc bn thông cảm nha