(x^2 + x )^2 + 4x^2 + 4x - 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(x^2+x)^2+4(x^2+x)-12
=(x^2+x+6)(x^2+x-2)
=(x^2+x+6)(x+2)(x-1)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16\\ =\left(x^2+x+2\right)^2-16\\ =\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)\\ =\left(x^2+x-2\right)\left(x^2+x+6\right)\\ =\left(x-1\right)\left(x+2\right)\left(x^2+x+6\right)\)
=\(x^4+2x^3+x^2+4x^2+4x-12\)
=\(x^4+2x^3+5x^2+4x-12\)
=\(x^4-x^3+3x^3-3x^2+8x^2+4x-12\)
=\(x^3(x-1)+3x^2(x-1)+4(2x^2+x-3)\)
=\(x^3(x-1)+3x^2(x-1)+4(2x^2-2x+3x-3)\)
=\(x^3(x-1)+3x^2(x-1)+4[2x(x-1)+3(x-1)]\)
=\(x^3(x-1)+3x^2(x-1)+4(x-1)(2x+3)\)
=\((x-1)[x^3+3x^2+4(2x+3)]\)
=\((x-1)(x^3+3x^2+8x+12)\)
\(\left(x^2+x\right)^2+\left(4x^2+4x\right)+4-16\\ =\left(x^2+x+2\right)^2-16\\ =\left(x^2+x+2-4\right)\left(x^2+x+2+4\right)\\ =\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(x^2+x-2\) vẫn còn phân tích được nữa bạn nhé.
\(x^2+x-2=\left(x-1\right)\left(x+2\right)\)
Ta nhận thấy sự giống nhau gữa các biểu thức trong và ngoài bình phương, từ đó nghĩ đến việc đặt ẩn phụ.
Đặt \(x^2+x=t\) , khi đó đa thức đã cho trở thành \(t^2+4t-12=\left(t-2\right)\left(t+6\right)\)
Quay trở lại biến x ta có: \(\left(x^2+x+6\right)\left(x^2+x-2\right)\)
Đặt \(A=\left(x^2+x\right)^2+4x^2+4x-12\)
\(=\left(x^2+x\right)^2+4\left(x^2+x\right)-12\)
Đặt \(x^2+x=t\)
Khi đó: \(A=t^2+4t-12\)
\(=\left(t-2\right)\left(t+6\right)\)
\(=\left(x^2+x-2\right)\left(x^2+x+6\right)\)
\(=\left[x^2+2x-x-2\right].\left(x^2+x+6\right)\)
\(=\left[x\left(x+2\right)-\left(x+2\right)\right].\left(x^2+x+5\right)\)
\(=\left(x+2\right)\left(x-1\right)\left(x^2+x+5\right)\)
Mong bạn hiểu lời giải và chúc bạn học tốt.
Pham Van Hung. Hình như bạn sai đó, xem kĩ lại dòng thức 2 và 3 từ dưới lên đi.
\(x^2-y^2+5x-5y\)
\(=\left(x-y\right)\left(x+y\right)+5\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y+5\right)\)
\(---\)
\(x^2-16y^2+4x+4\)
\(=\left(x^2+4x+4\right)-16y^2\)
\(=\left(x+2\right)^2-\left(4y\right)^2\)
\(=\left(x+2-4y\right)\left(x+2+4y\right)\)
\(=\left(x-4y+2\right)\left(x+4y+2\right)\)
\(---\)
\(3x^2+6xy+3y^2-12\)
\(=3\left(x^2+2xy+y^2-4\right)\)
\(=3\left[\left(x+y\right)^2-2^2\right]\)
\(=3\left(x+y-2\right)\left(x+y+2\right)\)
\(---\)
\(4x^3+4x^2+x\)
\(=x\left(4x^2+4x+1\right)\)
\(=x\left(2x+1\right)^2\)
\(\left(x^2+x\right)^2+4x^2+4x-12=\left(x^2+x\right)^2+4\left(x^2+x\right)+4-16=\left(x^2+x+2\right)^2-\left(4\right)^2=\left(x^2+x+6\right)\left(x^2+x-2\right)\)