K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2023

P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025

Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.

Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.

Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.

21 tháng 10 2016

\(B=2x^2+10x-1\)

\(\Rightarrow B=2\left(x^2+5x\right)-1\)

\(\Rightarrow B=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{27}{2}\)

\(\Rightarrow B=\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)

Ta có : \(2\left(x+\frac{5}{2}\right)^2\ge0\)

\(\Rightarrow2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)

Dấu "=" xảy rak hi và chỉ khi \(\left(x+\frac{5}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{5}{2}=0\)

\(\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(Min_B=\frac{-27}{2}\Leftrightarrow x=\frac{-5}{2}\)

20 tháng 10 2016

\(B=2x^2+10x-1\)

=> \(B=2\left(x^2+5x\right)-1\)

=> \(B=2\left(x^2+2.x\frac{5}{2}+\frac{25}{4}\right)-\frac{27}{2}\)

=> \(B=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)

Có \(2\left(x+\frac{5}{2}\right)^2\ge0\)với mọi x

=> \(2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)

Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\)<=> \(x+\frac{5}{2}=0\)<=> \(x=\frac{-5}{2}\)

KL: Bmin = \(\frac{-27}{2}\)<=> \(x=\frac{-5}{2}\)

\(C=5x-x^2\)

=> \(C=-\left(x^2-5x\right)\)

=> \(C=-\left(x^2-2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{25}{4}\)

=> \(C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Có \(\left(x-\frac{5}{2}\right)^2\ge0\)với mọi x

=> \(-\left(x-\frac{5}{2}\right)^2\le0\)

=> \(C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)

Dấu "=" xảy ra <=> \(\left(x-\frac{5}{2}\right)^2=0\)<=> \(x-\frac{5}{2}=0\)<=> \(x=\frac{5}{2}\)

KL: Cmax = \(\frac{25}{4}\)<=> \(x=\frac{5}{2}\)

20 tháng 10 2016

B=2x2+10x-1=2(x2+5x-1/2)=2(x2+2*5/2*x+25/4-27/4)=2[x2+2*5/2*x+(5/2)2]-27/2=2(x+5/2)2-27/2

Ta có: (x+5/2)^2>=0(với mọi x)

=> 2(x+5/2)^2>=0(với mọi x)

=> 2(x+5/2)^2-27/2>=-27/2(với mọi x)

hay B>=-27/2( với mọi x)

Do đó, GTNN của B là -27/2 khi:

x+5/2=0

x=-5/2

Vậy GTNN của B là -27/2 khi x=-5/2

C=5x-x^2=-x^2+5x=-x^2+2*5/2*x-25/4+25/4=-[x^2-2*5/2*x+(5/2)^2]+25/4=-(x-5/2)^2+25/4

Ta có: (x-5/2)^2>=0(với mọi x)

=>-(x-5/2)^2<=0(với mọi x)

=> -(x-5/2)^2+25/4<=25/4(với mọi x) hay C<=25/4(với mọi x)

Do đó, GTLN của C là 25/4 khi: x-5/2=0

                                              x=5/2

Vậy GTLN của C là 25/4 tại x=5/2

22 tháng 8 2020

A = x2 - 4x + 1 

A = ( x2 - 4x + 4 ) - 3

A = ( x - 2 )2 - 3

( x - 2 )2 ≥ 0 ∀ x => ( x - 2 )2 - 3 ≥ -3

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MinA = -3 <=> x = 2

B = 4x2 + 4x + 11

B = 4( x2 + x + 1/4 ) + 10

B = 4( x + 1/2 )2 + 10

4( x + 1/2 )2 ≥ 0 ∀ x => 4( x + 1/2 )2 + 10 ≥ 10

Đẳng thức xảy ra <=> x + 1/2 = 0 => x = -1/2

=> MinB = 10 <=> x = -1/2

C = ( x - 1 )( x + 3 )( x + 2 )( x + 6 )

C = [ ( x - 1 )( x + 6 ) ][ ( x + 3 )( x + 2 ) ]

C = [ x2 + 5x - 6 ][ x2 + 5x + 6 ]

C = ( x2 + 5x )2 - 62 = ( x2 + 5x )2 - 36

( x2 + 5x )2 ≥ 0 ∀ x => ( x2 + 5x )2 - 36 ≥ -36

Đẳng thức xảy ra <=> x2 + 5x = 0

                             <=> x( x + 5 ) = 0

                             <=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)

=> MinC = -36 <=> x = 0 hoặc x = -5

D = 5 - 8x - x2

D = -( x2 + 8x + 16 ) + 21

D = -( x + 4 )2 + 21

-( x + 4 )2 ≤ 0 ∀ x => -( x + 4 )2 + 21 ≤ 21

Đẳng thức xảy ra <=> x + 4 = 0 => x = -4

=> MaxD = 21 <=> x = -4

E = 4x - x2 + 1

E = -( x2 - 4x + 4 ) + 5

E = -( x - 2 )2 + 5

-( x - 2 )2 ≤ 0 ∀ x => -( x - 2 )2 + 5 ≤ 5 

Đẳng thức xảy ra <=> x - 2 = 0 => x = 2

=> MaxE = 5 <=> x = 2

19 tháng 11 2015

P=\(\frac{1}{\sqrt{x}}+\sqrt{x}-1\)

áp dụng bất đẳng thức 2 số đối nhau là \(\frac{1}{\sqrt{x}}và\sqrt{x}luôn\ge2\)

suy ra GTNN của P=2-1=1 

AH
Akai Haruma
Giáo viên
4 tháng 2 2024

Lời giải:
Để PS $\frac{2a-3}{4}$ dương và có giá trị nhỏ nhất thì $2a-3>0$ và nhỏ nhất

Vì $2a-3$ nguyên nên $2a-3$ dương và có giá trị nhỏ nhất khi $2a-3=1$

$\Rightarrow a=2$
Vậy $\frac{2a-3}{4}$ nhỏ nhất bằng $\frac{1}{4}$

3 tháng 4 2016

nhân cái đầu với cái cuối, hai cái giữa nhân vào nhau rồi đặt ẩn là ra

21 tháng 6 2022

\(A=\left(x-4\right)^2+1\)

Ta có: \(\left(x-4\right)^2\ge0\Rightarrow\left(x-4\right)^2+1\ge1\Rightarrow A\ge1\)

\(A_{min}=1\Leftrightarrow x=4\)

\(B=\left|3x-2\right|-5\)

Ta có: \(\left|3x-2\right|\ge0\Rightarrow\left|3x-2\right|-5\ge-5\Rightarrow B\ge-5\)

\(B_{min}=-5\Leftrightarrow x=\dfrac{2}{3}\)

\(C=5-\left(2x-1\right)^4\)

Ta có: \(\left(2x-1\right)^4\ge0\forall x\Rightarrow-\left(2x-1\right)^4\le0\forall x\Rightarrow5-\left(2x-1\right)^4\le5\Rightarrow C\le5\)

\(C_{max}=5\Leftrightarrow x=\dfrac{1}{2}\)

\(D=-3\left(x-3\right)^2-\left(y-1\right)^2-2021\)

Ta có: \(\left\{{}\begin{matrix}-3\left(x-3\right)^2\le0\forall x\\-\left(y-1\right)^2\le0\forall y\end{matrix}\right.\Rightarrow-3\left(x-3\right)^2-\left(y-1\right)^2\le0\forall x,y\Rightarrow-3\left(x-3\right)^2-\left(y-1\right)^2-2021\le-2021\Rightarrow D\le-2021\)

 

\(D_{max}=-2021\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

\(E=-\left|x^2-1\right|-\left(x-1\right)^2-y^2-2020\)

\(=-\left|\left(x-1\right)\left(x+1\right)\right|-\left(x-1\right)^2-y^2-2020\)

Ta có: \(\left\{{}\begin{matrix}\left|\left(x-1\right)\left(x+1\right)\right|\ge0\forall x\Rightarrow-\left|\left(x-1\right)\left(x+1\right)\right|\le0\\\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\\y^2\ge0\Rightarrow-y^2\le0\end{matrix}\right.\Rightarrow E\le-2020\)

\(E_{max}=-2020\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

 

15 tháng 1 2018

a, Ta có: \(\left|x+2\right|\ge0\Rightarrow A=\left|x+2\right|+50\ge50\)

Dấu "=" xảy ra khi x=-2

Vậy GTNN của A=50 khi x=-2

b, Ta có: \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\Rightarrow B=\left|x-100\right|+\left|y+200\right|-1\ge-1\)

Dấu "=" xảy ra khi x=100,y=-200

Vậy GTNN của B=-1 khi x=100,y=-200

c, Đặt C = 2015-|x+5|

Ta có: \(\left|x+5\right|\ge0\Rightarrow-\left|x+5\right|\le0\Rightarrow C=2015-\left|x+5\right|\le2015\)

Dấu "=" xảy ra khi x=-5

Vậy GTLN của C = 2015 khi x = -5