Tìm GTLN và GTNN của biểu thức
\(A=\sqrt{x-1}+\sqrt{4-x}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
$A^2=x+4+6-x+2\sqrt{(x+4)(6-x)}=10+2\sqrt{(x+4)(6-x)}\geq 10$
$\Rightarrow A\geq \sqrt{10}$ (do $A\geq 0$)
Vậy $A_{\min}=\sqrt{10}$. Giá trị này đạt được khi $(x+4)(6-x)=0\Leftrightarrow x=-4$ hoặc $x=6$
----------------------
Áp dụng BĐT Bunhiacopkxy:
$A^2\leq (x+4+6-x)(1+1)=10.2=20$
$\Rightarrow A\leq \sqrt{20}$
Vậy $A_{\max}=\sqrt{20}$
Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\)
Lại có: \(4\sqrt{x}\ge0\) với mọi x
\(3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]>0\) với mọi x
\(\Rightarrow\) \(\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\right]}\ge0\) với mọi x
Dấu "=" xảy ra \(\Leftrightarrow\) x = 0
Vậy ...
Chúc bn học tốt! (Mk ms nghĩ ra được GTNN thôi thông cảm!)
Còn tìm GTLN:
Ta có: \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{4\sqrt{x}}{3\left[\left(\sqrt{x}-1\right)^2+\sqrt{x}\right]}\le\dfrac{4\sqrt{x}}{3\sqrt{x}}=\dfrac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\) \(\sqrt{x}-1=0\) \(\Leftrightarrow\) x = 1
Vậy ...
Chúc bn học tốt!
Mọi người giải giúp em nhé
Tính hợp lí
(2018/2017-2019/2018+2020/2019)×(1/2-
1/3-1/6)×(1/2+1/3+1/4+...+1/2020)
Em cảm ơn
Tìm Max trước thôi nhé, Min nghĩ sau:V
a) đk: \(1\le x\le4\)
Ta có: \(A=\sqrt{x-1}+\sqrt{4-x}\)
=> \(A^2=\left(\sqrt{x-1}+\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-1+4-x\right)=2.3=6\)
=> \(A\le\sqrt{6}\) ( BĐT Bunhiacopxki)
Dấu "=" xảy ra khi: \(x-1=4-x\Rightarrow x=\frac{5}{2}\)
Vậy Max(A) = \(\sqrt{6}\) khi x = 5/2
b) đk: \(-1\le x\le6\)
Tương tự sử dụng BĐT Bunhiacopxki:
\(B\le\sqrt{\left(1^2+1^2\right)\left(x+1+6-x\right)}=\sqrt{2.7}=\sqrt{14}\)
Dấu "=" xảy ra khi: \(x+1=6-x\Rightarrow x=\frac{5}{2}\)
Vậy Max(B) = \(\sqrt{14}\) khi \(x=\frac{5}{2}\)
*Max
Xét `P-4`
`=(4\sqrtx+3-4x-4)/(x+1)`
`=(-4x+4\sqrtx-1)/(x+1)`
`=(-(2\sqrtx-1)^2)/(x+1)<=0`
`=>P<=1`
Dấu "=" `<=>2\sqrtx=1<=>x=1/4`
*Min
Xét `P+1`
`=(4\sqrtx+3+x+1)/(x+1)`
`=(x+4\sqrtx+4)/(x+1)`
`=(\sqrtx+2)^2/(x+1)>=0`
`=>P>=-1`
Dấu "=" `<=>\sqrtx+2=0<=>\sqrtx=-2`(vô lý)
=>Không có giá trị nhỏ nhất.
\(M^2=8-x+x-4+2\sqrt{8-x}\sqrt{x-4}=4+2\sqrt{8-x}\sqrt{x-4}\ge4\)
\(\Rightarrow M\ge2.\) Đẳng thức xảy ra khi \(2\sqrt{8-x}\sqrt{x-4}=0\Leftrightarrow x=4\text{ hoặc }x=8\)
GTNN của M là 2.
Áp dụng bất đẳng thức Côsi, ta có: \(2\sqrt{x-4}\sqrt{8-x}\le\left(x-4\right)+\left(8-x\right)=4\)
\(\Rightarrow M^2\le4+4=8\)
\(\Rightarrow M\le2\sqrt{2}.\)
Đẳng thức xảy ra khi \(\sqrt{x-4}=\sqrt{8-x}\Leftrightarrow x=6.\)
Vậy GTLN của M là \(2\sqrt{2}\)
A tương tự.
để biểu thức C xác định thì xảy ra đồng thời
=>2=<x=<5
thay x=2;3;4;5
tim ra gia tri nho nhat va lon nhat
ĐK: x\(\ge0\).
Đặt \(A=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)
Đặt \(t=\sqrt{x}\)( t >=0)
Có: \(A=\frac{t}{t^2+t+1}\)
<=> \(At^2+\left(A-1\right)t+A=0\)(1)
TH1: A =0 => t =0
TH2: A khác 0.
(1) có nghiệm <=> \(\Delta\ge0\Leftrightarrow\left(A-1\right)^2-4A^2\ge0\Leftrightarrow-3A^2-2A+1\ge0\Leftrightarrow-1\le A\le\frac{1}{3}\)
Do đó: A min = -1 thay vào tìm x
A max = 1/3 thay vào tìm x .
Kết luận....
*)Tìm GTNN: Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:
\(A=\sqrt{x-1}+\sqrt{4-x}\)
\(\ge\sqrt{x-1+4-x}=\sqrt{3}\)
*)Tìm GTLN: Áp dụng BĐT AM-GM ta có:
\(A^2=\left(\sqrt{x-1}+\sqrt{4-x}\right)^2\)
\(=\left(x-1\right)+\left(4-x\right)+2\sqrt{\left(x-1\right)\left(4-x\right)}\)
\(=3+2\sqrt{\left(x-1\right)\left(4-x\right)}\)
\(\le3+\left(x-1\right)\left(4-x\right)=3+3=6\)
\(\Rightarrow A^2\le6\Rightarrow A\le\sqrt{6}\)
cho hỏi bất đảng thức AM-GM là j v