Bạn nào giải được phương trình thì giải giùm mình :
x + 1 = \(\frac{1}{3}\). y - 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đkxđ: \(\hept{\begin{cases}x\ge-\frac{1}{4}\\y\ge2\end{cases}}\)
\(\Leftrightarrow2+\sqrt{\left(\sqrt{x+\frac{1}{4}}+\frac{1}{2}\right)^2}=y\Leftrightarrow2+\frac{1}{2}+\sqrt{x+\frac{1}{2}}=y\Leftrightarrow\sqrt{x+\frac{1}{2}}+\frac{5}{2}=y\)
do x,y nguyên dương nên \(\sqrt{x+\frac{1}{2}}+\frac{5}{2}\)nguyên dương\(\Leftrightarrow\sqrt{x+\frac{1}{2}}=\frac{k}{2}\)(K là số nguyên lẻ, \(k>1\))
\(\Rightarrow x=\frac{k^2-2}{4}\)
do \(k^2\)là số chính phương chia 4 dư 0,1 \(\Rightarrow x=\frac{k^2-2}{4}\notin Z\)
=> ko tồn tại cặp số nguyên dương x,y tmđkđb
mk nghĩ bạn viết sai đề bài ; mk đoán đề bài ntn \(\hept{\begin{cases}\frac{1}{x}+\frac{4}{y}+\frac{9}{z}=3\\x+y+z\le12\end{cases}}\)
để mk làm theo đề bài của mk nhé
nhân từng vế của các bất đẳng thức ta có \(\left(\frac{1}{x}+\frac{4}{y}+\frac{9}{z}\right)\left(x+y+z\right)=\left[\left(\frac{1}{\sqrt{x}}\right)^2+\left(\frac{2}{\sqrt{y}}\right)^2+\left(\frac{3}{\sqrt{z}}\right)^2\right]\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2+\left(\sqrt{z}\right)^2\right]\ge\left(1+2+3\right)^2=36\)( bất đẳng thức bu-nhi-a- cốp=xki)
dấu ''='' xảy ra khi \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) ==> \(\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)
Ta có: \(\hept{\begin{cases}\left(\frac{1}{x}+y\right)+\left(\frac{1}{x}-y\right)=\frac{5}{8}\\\left(\frac{1}{x}+y\right)-\left(\frac{1}{x}-y\right)=-\frac{3}{8}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{2}{x}=\frac{5}{8}\\2y=-\frac{3}{8}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{16}{5}\\y=-\frac{3}{16}\end{cases}}}\)
\(\text{ĐK: }\hept{\begin{cases}0\le x\le1\\\sqrt{x}\ne\sqrt{1-x}\end{cases}\Leftrightarrow}\hept{\begin{cases}0\le x\le1\\2x-1\ne0\end{cases}}\)
\(\frac{6x-3}{\sqrt{x}-\sqrt{1-x}}=\frac{3\left(2x-1\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{x-\left(1-x\right)}=\frac{3\left(2x-1\right)\left(\sqrt{x}+\sqrt{1-x}\right)}{2x-1}=3\left(\sqrt{x}+\sqrt{1-x}\right)\)\(\text{Đặt }t=\sqrt{x}+\sqrt{1-x}\)
\(t^2=x+1-x+2\sqrt{x}\sqrt{1-x}=1+2\sqrt{x-x^2}\)
\(\Rightarrow2\sqrt{x-x^2}=t^2-1\)
\(pt\rightarrow3t=3+t^2-1\Leftrightarrow t^2-3t+2=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=2\end{cases}}\)
\(pt\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+\sqrt{1-x}=1\\\sqrt{x}+\sqrt{1-x}=2\end{cases}}\)
x + 1 = \(\frac{1}{3}.\) y - 3
<=> x - \(\frac{1}{3}.\)y= (- 3) - 1
<=> x - \(\frac{1}{3}.\)y= - 4 <=> x = \(\frac{1}{3}.\)y - 4
ta thấy: