Ai giải giúp em với ạ
Cho các số 0 <=a, b, c <=1. Chứng minh rằng a + b2 + c3 - ab - bc- ca <=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=\sqrt{\dfrac{a}{bc}}\) ; \(y=\sqrt{\dfrac{b}{ca}}\) ; \(z=\sqrt{\dfrac{c}{ab}}\)
\(\Rightarrow a=\dfrac{1}{yz}\) ; \(b=\dfrac{1}{zx}\) ; \(c=\dfrac{1}{xy}\)
\(\Rightarrow xy+yz+zx=1\)
Khi đó, tồn tại một tam giác ABC sao cho:
\(x=tan\dfrac{A}{2}\) ; \(y=tan\dfrac{B}{2}\) ; \(z=tan\dfrac{C}{2}\)
Thay vào bài toán:
\(A=\dfrac{x^2}{1+x^2}+\sqrt{3}\left(\dfrac{y^2}{1+y^2}+\dfrac{z^2}{1+z^2}\right)\)
\(=\dfrac{tan^2\dfrac{A}{2}}{1+tan^2\dfrac{A}{2}}+\sqrt{3}\left(\dfrac{tan^2\dfrac{B}{2}}{1+tan^2\dfrac{B}{2}}+\dfrac{tan^2\dfrac{C}{2}}{1+tan^2\dfrac{C}{2}}\right)\)
\(=sin^2\dfrac{A}{2}+\sqrt{3}\left(sin^2\dfrac{B}{2}+sin^2\dfrac{C}{2}\right)\)
\(=\dfrac{1}{2}-\dfrac{1}{2}cosA+\dfrac{\sqrt{3}}{2}\left(2-cosB-cosC\right)\)
\(=\dfrac{1+2\sqrt{3}}{2}-\dfrac{1}{2}\left(cosA+\sqrt{3}cosB+\sqrt{3}cosC\right)\)
Xét \(B=cosA+\sqrt{3}\left(cosB+cosC\right)=cosA+2\sqrt{3}cos\dfrac{B+C}{2}cos\dfrac{B-C}{2}\)
\(\le cosA+2\sqrt{3}cos\dfrac{B+C}{2}=-2sin^2\dfrac{A}{2}+2\sqrt{3}sin\dfrac{A}{2}+1\)
Xét hàm \(f\left(t\right)=-2t^2+2\sqrt{3}sint+1\) với \(t\in\left(0;1\right)\)
\(f'\left(t\right)=-4t+2\sqrt{3}=0\Rightarrow t=\dfrac{\sqrt{3}}{2}\)
\(f\left(0\right)=1\) ; \(f\left(\dfrac{\sqrt{3}}{2}\right)=\dfrac{5}{2}\) ; \(f\left(1\right)=2\sqrt{3}-1\)
\(\Rightarrow B_{max}=\dfrac{5}{2}\)
\(\Rightarrow A\ge\dfrac{1+2\sqrt{3}}{2}-\dfrac{5}{4}=\dfrac{4\sqrt{3}-3}{4}\)
https://tuhoc365.vn/qa/cho-bieu-thuc-p-a4-b4-ab-voi-ab-la-cac-so-thuc-thoa-man-a2-b2-ab-3-tim-gia-tri-lon/
Bạn có thể tham khảo ở đây nha.
Đường tròn (C) tâm \(I\left(1;-2\right)\) bán kính \(R=3\)
Ảnh của đường tròn (C) là đường tròn (C') có tâm \(I'\left(x';y'\right)\) là ảnh của I qua phép tịnh tiến \(\overrightarrow{v}\) và bán kính \(R'=R=3\)
\(\left\{{}\begin{matrix}x'=-3+1=-2\\y'=1-2=-1\end{matrix}\right.\)
Phương trình (C'):
\(\left(x+2\right)^2+\left(y+1\right)^2=9\)
a: Xét ΔABC có
BE,CF là đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC tại D
b: Xét ΔCDA vuông tại D và ΔCEB vuông tại E có
góc BCE chung
=>ΔCDA đồng dạng với ΔCEB
=>CD/CE=CA/CB
=>CD*CB=CE*CA
c: y=(m-1)x+4
=>\(\left(m-1\right)x-y+4=0\)
Khoảng cách từ O(0;0) đến (d) là:
\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot\left(m-1\right)+0\cdot\left(-1\right)+4\right|}{\sqrt{\left(m-1\right)^2+\left(-1\right)^2}}=\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}\)
Để \(d\left(O;\left(d\right)\right)=2\) thì \(\dfrac{4}{\sqrt{\left(m-1\right)^2+1}}=2\)
=>\(\sqrt{\left(m-1\right)^2+1}=2\)
=>\(\left(m-1\right)^2+1=4\)
=>\(\left(m-1\right)^2=3\)
=>\(m-1=\pm\sqrt{3}\)
=>\(m=\pm\sqrt{3}+1\)
Vì \(0\le a,b,c\le1\)nên ta có \(1-a>0,1-b>0,1-c>0\)\(\Rightarrow\left(1-a\right)\left(1-b\right)\left(1-c\right)\ge0\Leftrightarrow1-\left(a+b+c\right)+\left(ab+ac+bc\right)-abc\ge0\)
\(\Leftrightarrow1\ge a+b+c-\left(ac+bc+ab\right)+abc\left(1\right)\)
Mặt khác vì \(0\le a,b,c\le1\Rightarrow b\ge b^2;c\ge c^3;abc\ge0\left(2\right)\)
Từ 1,2 có : \(a+b^2+c^3-\left(ab+ac+bc\right)\le1\)
dấu \(\left(a,b,c\right)\)là hoán vị của \(\left(0,1,1\right)\)