Cho hình lăng trụ tam giác ABC.A’B’C’. Lấy M, M’ lần lượt là trung điểm các đoạn thẳng BC, B’C’; lấy các điểm G, G’, K lần lượt thuộc các đoạn AM, A’M’, A’B sao cho `(AG)/(AM)=(A′G′)/(A′M′)=(A′K)/(A′B)=23`
a) Chứng minh rằng CM’ // (A’BM’)
b) Chứng minh rằng G’K // (BCC’B’)
c) Chứng minh rằng (GG’K) // (BCC’B’)
d) Gọi(α)
là mặt phẳng đi qua K và song song với mặt phẳng (ABC). Mặt phẳng(α)
cắt cạnh CC’ tại điểm I. Tính `(IC)/(IC′)`
a) Ta có: MBM'C' là hình bình hành nên C'M // BM'
Mà BM' thuộc (A'BM')
Suy ra: C'M // (A'BM')
b) △A'BM' có: \(\dfrac{A'K}{A'B}=\dfrac{A'G'}{A'M'}=\dfrac{2}{3}\)
Nên G'K // BM' mà BM' thuộc (BCC'B')
Suy ra: G'K // (BCC'B')
c) Hình bình hành AMM'A' có: GG' // MM'
Mà MM' thuộc (BCC'B')
Suy ra: GG' // (BCC'B')
Mà G'K // (BCC'B')
Do đó: (GG'K) // (BCC'B')
d) Trong mp(ABB’A’), vẽ đường thẳng qua K và song song với AB, A’B’; cắt A’A và B’B lần lượt tại J và H.
Trong mp (ACC’A”), vẽ đường thẳng qua J và song song với AC, A’C’; cắt C’C tại I.
Ta có: IJ // AC mà AC ⊂ (ABC) nên IJ // (ABC);
JK // AB mà AB ⊂ (ABC) nên JK // (ABC).
Lại có IJ và JK cắt nhau tại J và cùng nằm trong mp(IJK) nên (IJK) // (ABC).
Theo bài, mp(α) // (ABC) và đi qua K nên mp(α) chính là mp(IJK).
Khi đó CC’ cắt (α) tại I.
Ta có: (IJK) // (ABC) mà (ABC) // (A’B’C’) nên (A’B’C’), (IJK), (ABC) là ba mặt phẳng song song với nhau.