K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trường hợp a cắt b theo dấu hiệu nhận biết hai mặt phẳng song song thì ý kiến đúng

Trường hợp a không cắt b thì a//b

Ta có: a thuộc (P), a//(Q)

B thuộc (P), b//(Q)

Do đó: (P)//(Q)

=>Ý kiến này đúng trong cả hai trường hợp

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 8 2023

Nếu hai mặt phẳng (P) và (Q) có một điểm chung thì chúng có đường thẳng chung d.

Ta có: a // (Q);

            a ⊂ (P);

           (P) ∩ (Q) = d.

Suy ra a // d.

Tương tự ta cũng có b // d.

Mà a, b, d cùng nằm trong mặt phẳng (P) nên a // b // d, điều này mâu thuẫn với giả thiết a, b cắt nhau trong (P).

Vậy hai mặt phẳng (P) và (Q) không có điểm chung hay (P) // (Q).

Số phát biểu đúng 1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho 2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy 3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường...
Đọc tiếp

Số phát biểu đúng

1.     Trong không gian qua 1 điểm không nằm trên đường thẳng cho trước, có một và chỉ một đường thẳng song song với đường thẳng đã cho

2.     Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy đồng quy

3.     Nếu 2 mặt phẳng phân biệt lần lượt chứa 2 đường thẳng song song thì giao tuyến của chúng ( nếu có ) cũng song song với 2 đường thẳng đó hoặc trùng với một trong 2 đường thẳng đó

4.     2 đường thẳng phân biệt cùng song song với đường thẳng thứ 3 thì chúng song song với nhau

5.     Nếu đường thẳng d không nằm trong mặt phẳng ( ) và d song song với đường thẳng d’ nằm trong ( ) thì d song song với ( )

6.     Cho đường thẳng a song song với mặt phẳng . Nếu mặt phẳng  chứa a và cắt  theo giao tuyến b thì b song song với a

7.     Nếu 2 mặt phẳng cùng song song với 1 đường thẳng thì giao tuyến của chúng ( nếu có ) cũng song song với đường thẳng đó

     8. Cho 2 đường thẳng chéo nhau. Có vô số mặt phẳng chứa đường thẳng này và song song với đường thẳng kia.

A. 8

B. 7

C. 6

D. 5

1
5 tháng 2 2018

Đáp án C

2. Nếu 3 mặt phẳng đôi một cắt nhau theo 3 giao tuyến phân biệt thì 3 giao tuyến ấy hoặc đồng quy, hoặc đôi một song song với nhau

8. Cho 2 đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia

18 tháng 11 2019

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Gọi \(I\) là giao điểm của \(a\) và \(b\).

Ta có:

\(\begin{array}{l}\left. \begin{array}{l}a\parallel \left( Q \right)\\\left( P \right) \supset a\\\left( P \right) \cap \left( Q \right) = c\end{array} \right\} \Rightarrow c\parallel a\\\left. \begin{array}{l}b\parallel \left( Q \right)\\\left( P \right) \supset b\\\left( P \right) \cap \left( Q \right) = c\end{array} \right\} \Rightarrow c\parallel b\end{array}\)

Do đó qua \(I\) ta kẻ được hai đường thẳng \(a\) và \(b\) cùng song song với \(c\), mâu thuẫn với định lí qua một điểm nằm ngoài một đường thẳng, có một và chỉ một đường thẳng song song với đường thẳng đó.

Vậy \(c\) phải cắt ít nhất một trong hai đường thẳng \(a,b\).

Nếu đường thẳng \(c\) cắt đường thẳng \(a\) hoặc đường thẳng \(b\), mà đường thẳng \(c\) nằm trong mặt phẳng \(\left( Q \right)\), khi đó đường thẳng \(a\) hoặc đường thẳng \(b\) có 1 điểm chung với mặt phẳng \(\left( Q \right)\). Điều này trái với giả thiết \(a\) và \(b\) cùng song song với \(\left( Q \right)\).

b) Vì \(\left( P \right)\) chứa đường thẳng \(a\) mà \(a\) song song với mặt phẳng \(\left( Q \right)\) nên \(\left( P \right)\) và \(\left( Q \right)\) là hai mặt phẳng phân biệt.

Theo chứng minh ở trên, nếu \(\left( P \right)\) và \(\left( Q \right)\) có điểm chung \(M\) thì mâu thuẫn với giả thiết \(a\) và \(b\) cùng song song với \(\left( Q \right)\).

Vậy hai mặt phẳng \(\left( P \right)\) và \(\left( Q \right)\) không có điểm chung.

a: Đúng

b: Sai

c: Sai

d: Sai

bạn Minh phát biểu sai vì \(\dfrac{CA}{C'A'}=\dfrac{AB+BC}{A'B'+C'B'}\ne\dfrac{AB}{BC}\ne\dfrac{A'B'}{C'B'}\)

21 tháng 1 2019

Đáp án B.

Theo định lý, nếu mặt phẳng (P) chứa hai đường thẳng cắt nhau và cùng song song với mặt phẳng (Q) thì (P) song song với (Q), do đó nếu lấy mọi đường thẳng nằm trong mặt phẳng (P) thì tồn tại hai đường thẳng cắt nhau thỏa mãn định lý, vậy phát biểu (2) đúng.

Phát biểu (1) sai vì hai đường thẳng đó có thể chéo nhau.

Chọn đáp án B

a: Sai

b: Sai

c: Đúng

d: Sai

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Nếu mặt phẳng \(\left( \alpha  \right)\) chứa hai đường thẳng cắt nhau và hai đường thẳng này song song với mặt phẳng \(\left( \beta  \right)\) thì \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) song song với nhau.