A=\(\dfrac{1}{6}\)+\(\dfrac{1}{30}\)+\(\dfrac{1}{70}\)+\(\dfrac{1}{126}\)+...+\(\dfrac{1}{966}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\left(\dfrac{1}{2}+1\right).\left(\dfrac{1}{3}+1\right).\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\)
\(=\dfrac{3}{2}.\dfrac{4}{3}.\dfrac{5}{4}...\dfrac{100}{99}\)
\(=\dfrac{3.4.5...100}{2.3.4...99}\)
\(=\dfrac{100}{2}=50\)
a,
\(\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\left(\dfrac{1}{4}+1\right)...\left(\dfrac{1}{99}+1\right)\\ =\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}\cdot...\cdot\dfrac{100}{99}\\ =\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot99}\\ =\dfrac{100}{2}=50\)
b,
\(\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\left(\dfrac{1}{4}-1\right)...\left(\dfrac{1}{100}-1\right)\\ =\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot\dfrac{-3}{4}\cdot...\cdot\dfrac{-99}{100}\\ =\dfrac{\left(-1\right)\left(-2\right)\left(-3\right)\cdot...\cdot\left(-99\right)}{2\cdot3\cdot4\cdot...\cdot100}\\ =\dfrac{\left(-1\right)\left(-1\right)\left(-1\right)\cdot...\left(-1\right)}{100}\left(\text{có }99\text{ số }-1\right)\\ =\dfrac{\left(-1\right)^{99}}{100}\\ =\dfrac{-1}{100}\)
c,
\(C=\dfrac{4}{30}+\dfrac{4}{70}+\dfrac{4}{126}+...+\dfrac{4}{798}\\ =\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{399}\\ =\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{19\cdot21}\\ =\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\\ =\dfrac{1}{3}-\dfrac{1}{21}\\ =\dfrac{7}{21}-\dfrac{1}{21}\\ =\dfrac{6}{21}=\dfrac{2}{7}\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{7}-\dfrac{1}{8}\)
\(A=1-\dfrac{1}{8}=\dfrac{7}{8}\)
a) \(A=\dfrac{3}{5}+6\dfrac{5}{6}+\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(=\dfrac{3}{5}+\dfrac{41}{6}\left(11\dfrac{1}{4}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
\(=\dfrac{3}{5}+\dfrac{41}{6}.2.\dfrac{3}{25}\)
\(=\dfrac{3}{5}+\dfrac{41}{25}\)
\(=\dfrac{15}{25}+\dfrac{41}{25}\)
\(=\dfrac{56}{25}\)
a) A = \(\dfrac{3}{5}+6\dfrac{5}{6}\left(11\dfrac{5}{20}-9\dfrac{1}{4}\right):8\dfrac{1}{3}\)
A = \(\dfrac{3}{5}+\dfrac{41}{6}\) \(\left(\dfrac{45}{4}-\dfrac{37}{4}\right)\) : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}+\dfrac{41}{6}\) . 2 : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}\) + \(\dfrac{41}{3}\) : \(\dfrac{25}{3}\)
A = \(\dfrac{3}{5}\) + \(\dfrac{41}{25}\)
A = \(\dfrac{56}{25}\)
Đặt `A=(1-3x)/(2x)+(3x-2)/(2x-1)+(3x-2)/(2x-4x^2)`
`=(2x(3x-2))/(2x(2x-1))-((3x-1)(2x-1))/(2x(2x-1))-(3x-2)/(2x(2x-1))`
`=(6x^2-4x-6x^2+5x-1-3x+2)/(2x(2x-1))`
`=(-2x+1)/(2x(2x-1))`
`=-1/(2x)`
`2x=1/(483)`
`=>A=-1/(1/483)=-483`
\(\dfrac{3}{10}+\dfrac{4}{7}.\dfrac{5}{4}-\dfrac{1}{70}=\dfrac{3}{10}+\dfrac{5}{7}-\dfrac{1}{70}=\dfrac{21}{70}+\dfrac{50}{70}-\dfrac{10}{70}=\dfrac{70}{70}=1\)
=>2A=4/2*6+4/6*10+4/10*14+...+4/42*46
=>2A=1/2-1/6+1/6-1/10+...+1/42-1/46=1/2-1/46=22/46
=>A=11/46
\(A=\dfrac{1}{6}+\dfrac{1}{30}+\dfrac{1}{70}+\dfrac{1}{126}+...+\dfrac{1}{966}\)
\(\Rightarrow\dfrac{4}{2}A=\dfrac{4}{2}\cdot\left(\dfrac{1}{6}+\dfrac{1}{30}+\dfrac{1}{70}+...+\dfrac{1}{966}\right)\)
\(\Rightarrow2A=\dfrac{4}{2\times6}+\dfrac{4}{6\times10}+\dfrac{4}{10\times14}+\dfrac{4}{14\times18}+...+\dfrac{4}{42\times46}\)
\(\Rightarrow2A=\dfrac{1}{2}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{14}+\dfrac{1}{14}-\dfrac{1}{18}+...+\dfrac{1}{42}-\dfrac{1}{46}\)
\(\Rightarrow2A=\dfrac{1}{2}-\dfrac{1}{46}\)
\(\Rightarrow2A=\dfrac{11}{23}\)
\(\Rightarrow A=\dfrac{11}{23}:2\)
\(\Rightarrow A=\dfrac{11}{46}\)