Rút gọn các biểu thức:
\(\sqrt{9x^2-2x}\) với x<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
b,\(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}=\sqrt{\left(\sqrt{2}+3\right)^2}-3+\sqrt{2}=\sqrt{2}+3-3+\sqrt{2}=2\sqrt{2}\)
c, \(\sqrt{9x^2}-2x=\sqrt{\left(3x\right)^2}-2x=3x-2x=x\)
d, câu này sai đề rồi , nếu sửa lại phải như này :
\(x-4+\sqrt{16-8x+x^2}=x-4+\sqrt{\left(4-x\right)^2}=x-4+4-x=0\)
a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)=\(\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\) = \(\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)
= \(3+\sqrt{2}-3+\sqrt{2}\) = \(2\sqrt{2}\)
c) \(\sqrt{9x^2}-2x=\sqrt{\left(3x\right)^2}-2x\) = \(\left|3x\right|-2x=-3x-2x\) (x < 0)
= \(-5x\)
d) \(x-4+\sqrt{16-8x+x^2}\) \(\left(x>4\right)\) = \(x-4+\sqrt{\left(4-x\right)^2}\)
= \(x-4+\left|4-x\right|\) = \(x-4-4+x\) ( \(x>4\))
= \(2x-8\)
Lời giải:
\(B=\frac{3}{x-1}\sqrt{\frac{(x-1)^2}{(3x)^2}}=\frac{3}{x-1}|\frac{x-1}{3x}|\)
\(=\frac{3}{x-1}.\frac{1-x}{3x}=\frac{-1}{x}\)
a) Ta có: \(A=3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}+30\)
\(=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+30\)
\(=14\sqrt{2x}+30\)
b) Ta có: \(B=4\sqrt{\dfrac{25x}{4}}-\dfrac{8}{3}\sqrt{\dfrac{9x}{4}}-\dfrac{4}{3x}\cdot\sqrt{\dfrac{9x^3}{64}}\)
\(=4\cdot\dfrac{5\sqrt{x}}{2}-\dfrac{8}{3}\cdot\dfrac{3\sqrt{x}}{2}-\dfrac{4}{3x}\cdot\dfrac{3x\sqrt{x}}{8}\)
\(=10\sqrt{x}-4\sqrt{x}-\dfrac{1}{2}\sqrt{x}\)
\(=\dfrac{11}{2}\sqrt{x}\)
c) Ta có: \(\dfrac{y}{2}+\dfrac{3}{4}\sqrt{9y^2-6y+1}-\dfrac{3}{2}\)
\(=\dfrac{1}{2}y+\dfrac{3}{4}\left(1-3y\right)-\dfrac{3}{2}\)
\(=\dfrac{1}{2}y+\dfrac{3}{4}-\dfrac{9}{4}y-\dfrac{3}{2}\)
\(=-\dfrac{7}{4}y-\dfrac{3}{4}\)
a, Ta có : \(4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}\right)^2-2\sqrt{3}\times1+1^2=\left(\sqrt{3}-1\right)^2\)
\(\Rightarrow\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}\)
Ta có : \(\sqrt{3}>\sqrt{1}\)(vì 3>1)
\(\Leftrightarrow\sqrt{3}>1\Leftrightarrow\sqrt{3}-1>0\Rightarrow\left|\sqrt{3}-1\right|=\sqrt{3}-1\)
Ta có: \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\left|\sqrt{3}-1\right|-\sqrt{3}=\sqrt{3}-1-\sqrt{3}=-1\)
a) \(\sqrt{4-2\sqrt{3}}-\sqrt{3}=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{3}\)=\(\sqrt{3}-1-\sqrt{3}=-1\)
b) \(\sqrt{11+6\sqrt{2}}-3+\sqrt{2}\) = \(\sqrt{\left(3+\sqrt{2}\right)^2}-3+\sqrt{2}\)
= \(3+\sqrt{2}-3+\sqrt{2}\) = \(2\sqrt{2}\)
d) \(x-4+\sqrt{16-8x+x^2}\) \(\left(x>4\right)\) = \(x-4+\sqrt{\left(4-x\right)^2}\)
= \(x-4+\left|4-x\right|\) = \(x-4-4+x\) (vì \(x>4\))
= \(2x-8\)
\(M=\frac{x+\sqrt{x^2-2x}}{x-\sqrt{x^2-2x}}-\frac{x-\sqrt{x^2-2x}}{x+\sqrt{x^2-2x}}\left(x< 0;x\ge2\right)\)
\(=\frac{\left(x+\sqrt{x^2-2x}\right)\left(x+\sqrt{x^2-2x}\right)}{x^2-\sqrt{x^2-2x}^2}-\frac{\left(x-\sqrt{x^2-2x}\right)\left(x-\sqrt{x^2-2x}\right)}{x^2-\sqrt{x^2-2x}^2}\)
\(=\frac{x^2+x\sqrt{x^2-2x}+x\sqrt{x^2-2x}+x^2-2x}{x^2-x^2-2x}-\frac{x^2-x\sqrt{x^2-2x}-x\sqrt{x^2-2x}+x^2-2x}{x^2-x^2-2x}\)
\(=\frac{2x^2+2x\sqrt{x^2-2x}-2x}{-2x}-\frac{2x^2-2\sqrt{x^2-2x}-2x}{-2x}\)
\(=\frac{2x^2+2x\sqrt{x^2-2x}-2x-2x^2+2x\sqrt{x^2-2x}+2x}{-2x}\)
\(=\frac{4x\sqrt{x^2-2x}}{-2x}=-2x\sqrt{x^2-2x}\)
a, \(A=\left(\sqrt{12}-2\sqrt{5}\right)\sqrt{3}+\sqrt{60}\)
\(=\left(2\sqrt{3}-2\sqrt{5}\right)\sqrt{3}+2\sqrt{15}\)
\(=2\sqrt{9}-2\sqrt{15}+2\sqrt{15}=2\sqrt{9}\)
b, \(B=\frac{\sqrt{4x}}{x-3}\sqrt{\frac{x^2-6x+9}{x}}=\frac{2\sqrt{x}}{x-3}.\sqrt{\frac{\left(x-3\right)^2}{x}}\)
\(=\frac{2\sqrt{x}}{x-3}.\frac{x-3}{\sqrt{x}}=2\)
Lời giải:
a.
\(B=\frac{2\sqrt{x}(\sqrt{x}-3)+\sqrt{x}(\sqrt{x}+3)-2x}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{x-3\sqrt{x}}{(\sqrt{x}-3)(\sqrt{x}+3)}=\frac{\sqrt{x}(\sqrt{x}-3)}{(\sqrt{x}+3)(\sqrt{x}-3)}=\frac{\sqrt{x}}{\sqrt{x}+3}\)
b.
\(P=AB=\frac{\sqrt{x}-2}{\sqrt{x}}.\frac{\sqrt{x}}{\sqrt{x}+3}=\frac{\sqrt{x}-2}{\sqrt{x}+3}\)
Để $P<0\Leftrightarrow \frac{\sqrt{x}-2}{\sqrt{x}+3}<0$
Mà $\sqrt{x}+3>0$ nên $\sqrt{x}-2<0$
$\Leftrightarrow 0< x< 4$
Kết hợp với ĐKXĐ suy ra $0< x< 4$
Mà $x$ nguyên nên $x\in left\{1; 2; 3\right\}$