cho a là một hợp số, khi phân tích ra thừa số nguyên tố chỉ chứa hai thừa số nguyên tố khác nhau là P1 và P2. Biết a3 có tất cả 40 ước hỏi a2 có bao nhiêu ước ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=p_1^x.p_2^y,a^3=p_1^{3x}.p_2^{3y},a^2=p_1^{2x}p_2^{2y}\).
Tổng số ước của \(a^3\)là \(\left(3x+1\right)\left(3y+1\right)=40=5.8=4.10=2.20=1.40\)
Vì \(3x+1>3,3y+1>3\)nên ta chỉ có hai trường hợp:
- \(\hept{\begin{cases}3x+1=5\\3y+1=8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)(loại)
- \(\hept{\begin{cases}3x+1=4\\3y+1=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)(thỏa)
Vậy số ước của \(a^2\)là \(\left(1.2+1\right)\left(3.2+1\right)=21\).
a = p 1 m . p 2 n => a 3 = p 1 3 m . p 2 3 n Số ước của a 3 là: (3m+1)(3n+1) = 40
Suy ra m = 1; n = 3 hoặc m = 3; n = 1
Số a 2 có số ước là (2m+1)(2n+1) = 3.7 = 21 ước
Bài này mk học òi, a3 là a3, còn a2 là a2 nha, bn viết sai đề rùi đó
Do a là 1 hợp số khi phân tích ra thừa số nguyên tố chỉ chứa 2 thừa số nguyên tố khác nhau là p1 và p2 => a = p1m . p2n (m,n thuộc N*)
=> a3 = p13m . p23m
=> số ước của a3 là (3m + 1).(3n + 1) = 40
=> 3m + 1 = 4, 3n + 1 = 10 hoặc 3m + 1 = 10, 3n + 1 = 4
=> 3m = 3, 3n = 9 hoặc 3m = 9, 3n = 3
=> m = 1, n = 3 hoặc m = 3, n = 9
+ Với m = 1, n = 3 => số ước của a2 là (2.1 + 1).(2.3 + 1) = 21 ( ước)
+ Với m = 3, n = 1 => số ước của a2 là (2.3 + 1).(2.1 + 1) = 21 ( ước)
Vậy a2 có 21 ước
Ủng hộ mk nha ♡_♡ ☆_☆
2:
x+xy+y=4
=>x(y+1)+y+1=5
=>(x+1)(y+1)=5
=>\(\left(x+1;y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;4\right);\left(4;0\right);\left(-2;-6\right);\left(-6;-2\right)\right\}\)
Gọi lũy thừa của 2 số nguyên tố khác nhau p1 và p2 trong hợp số a lần lượt là x ; y (x;y >=1)
Khi đó hợp số a = p1x * p2y và a3 = p13x * p23y có số ước nguyên nguyên dương là: (3x+1)(3y+1) = 40 (Đề phải sửa lại cho chặt chẽ: ... 40 ước nguyên dương; vì nếu tính cả ước nguyên âm thì bài toán không có nghiệm )
Do đó 3x+1 hoặc 3y+1 là ước dương >=4 của 40.
U(40) (>=4; chia 3 dư 1) = {4;10}
x;y có vai trò như nhau nên nếu 3x + 1 = 4 thì 3y + 1 = 10 và ngược lại nên giả sử x = 1 và y =3.
Vậy a = p11 * p23
=> a2 = p12 * p26 có số ước nguyên dương là: (2+1)(6+1) = 21 ước nguyên dương.
Ta có :
a = p1m . p2n \(\Rightarrow\)a3 = p13m . p23n .
Số ước của a3 là ( 3m + 1 ) . ( 3n + 1 ) = 40 \(\Rightarrow\)m = 1 ; n = 3 ( hoặc m = 3 ; n = 1 )
số a2 = p12m . p22n có số ước là ( 2m + 1 ) . ( 2n + 1 ) = 3 . 7 = 21 ( ước )
Vậy a2 có 21 ước
Theo đề bài ta có:
\(a=p1^m.p2^n\Rightarrow a^3=p1^{3m}.p2^{3n}\)
Số ước của \(a^3\)là: (3m+1).(3n+1)= 40 (ước)
\(\Rightarrow\)m=1 ; n=3 hoặc m = 3 ; n = 1
Số \(a^2=p1^{2m}.p2^{2n}\)có số ước là: [(2m+1)(2n+1)] (ước)
Nếu m = 1; n=3 thì \(a^2\) có: (2.1+1). (2.3+1) = 21 (ước)
Nếu m = 3;n=1 thì \(a^2\)có: (2.3+1). (2.1+1) = 21 (ước)
Vậy \(a^2\)có tất cả 21 ước số.