cho tam giác ABC. Về phía ngoài tam giác ABC vẽ các tam giác đều ABD; BCE và ACF. Chứng minh rằng B,I,F thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha.
Vì ADKE là hình bình hành.
=> ^ADK = ^ AEK
=> ^ ADK + 60o = ^ AEK + 60o
=> ^BDK = ^KCE
Xét tam giác BDK = tam giác KEC ( c.g.c )
=> BK = KC ( 1 )
Có ^DAE + ^ BAC + ^ DAB + ^ EAC = 360o
=> ^ DAE + ^BAC + 120o = 360o
=> ^BAC = 240o - ^DAE
mà ^DAE = 180o - ^ADK
=> ^BAC = 60o + ^ADK = ^BDA
=> tam giác BAC = tam giác BDK ( c g.c )
=> BC = BK ( 2 )
Từ ( 1 ), ( 2 )
=> BC = BK = CK
=> tam giác KBC đều
a:
góc BAE=góc BAC+góc CAE=góc BAC+60 độ
góc CAD=góc CAB+góc BAD=góc BAC+60 độ
=>góc BAE=góc CAD
Xét ΔABE và ΔADC có
AB=AD
góc BAE=góc DAC
AE=AC
=>ΔABE=ΔADC
b: ΔABE=ΔADC
=>góc ABE=góc ADC
=>góc ABM=góc ADM
Xét tứ giác ADBM có
góc ABM=góc ADM
=>ADBM là tứ giác nội tiếp
=>góc DMB=góc DAB=60 độ
góc DMB+góc BMC=180 độ(kề bù)
=>góc BMC=180-60=120 độ
a.Vì ΔABD,ΔACE đều
→AD=AB,AC=AE,ˆDAB=ˆCAE=60°°
Xét ΔACD,ΔABE có:
AD=ABAD=AB
ˆDAC=ˆDAB+ˆBAC=ˆEAC+ˆCAB=ˆBAE
→ΔADC=ΔABE(c.g.c)
AC=AE
b.Gọi AB∩CD=F
Từ câu b →ˆADC=ˆABE
→ˆADF=ˆFBI
→ˆFIB=180o−ˆIFB−ˆIBF=180o−ˆAFD−ˆFDA=ˆDAF=ˆDAB=60°°
→ˆBIC=180o−ˆFIB=120o→BIC^=180o−FIB^=120°°
c.Từ câu a →BE=CD
Xét ΔADM,ΔABN có:
AD=AB
ˆADM=ˆADC=ˆABE=ˆABN
DM=1212CD=1212BE=BN
→ΔADM=ΔABN(c.g.c)
→AM=AN,ˆDAM=ˆBAN
→ˆMAN=ˆBAN−ˆBAM=ˆDAM−ˆBAM=ˆDAB=60°°
→ΔAMN