K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2023

Bạn xem lại đề

3 tháng 6 2017

Xét hiệu :

\(100^2+103^2+105^2+94^2-\left(101^2+98^2+96^2+107^2\right)\)

\(=100^2+103^2+105^2+94^2-101^2-98^2-96^2-107^2\)

\(=\left(100^2-98^2\right)+\left(103^2+101^2\right)-\left(107^2-105^2\right)-\left(96^2-94^2\right)\)

\(=\left(100-98\right)\left(100+98\right)+\left(103-101\right)\left(103+101\right)-\left(96-94\right)\left(96+94\right)\)\(-\left(107-105\right)\left(107+105\right)\)

\(=2.198+2.204-2.212-2.190\)

\(=2.\left(198+204-212-190\right)\)

\(=2.0\)

\(=0\)

VẬY dpcm

3 tháng 6 2017

Ta có:  

1002+1032+1052+942=1012+982+962+1072

=>1002+1032+1052+942-(1012+982+962+1072)=0

=>1002+1032+1052+942-1012-982-962-1072=0

=>(1002-982) + (1032-1012) + (1052-1072) + (942-962) = 0

=>(100-98)(100+98) + (103-101)(103+101) + (105-107)(105+107) + (94-96)(94+96) = 0

=>2.(100+98) + 2.(103+101) - 2.(105+107) - 2.(94+96) = 0

=>2.[(100+98)+(103+101)-(105+107)-(94+96)] = 0

=>2.(198+204-212-190)=0

=>2.0=0

                     Chứng tỏ 1002+1032+1052+942=1012+982+962+1072

5 tháng 7 2018

Xét hiệu , ta có :

1002 + 1032 + 1052 + 942 - ( 1012 + 982 + 962 + 1072 )

= 1002 + 1032 + 1052 + 942 - 1012 - 982 - 962 - 1072

= ( 1002 - 982 ) + ( 1032 - 1012 ) - ( 1072 - 1052 ) - ( 962 - 942 )

= ( 100 - 98 ).( 100 + 98 ) + ( 103 - 101 ).( 103 + 101 ) - ( 107 - 105 ). ( 107 + 105 ) - ( 96 - 94 ).( 96 + 94 )

= 2.198 + 2.204 - 2.212 - 2.190 = 2.( 198 + 204 - 212 - 190)

= 2.0 = 0

Vậy 1002 + 1032 + 1052 + 942 = 1012 + 982 + 962 + 1072.

26 tháng 6 2018

dùng hàng đẳng thức A^2-B^2=(A-B)(A+B) nhé còn phần b chuyển vế sang rồi dùng HĐT là được

26 tháng 6 2018

a) \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1\)

b) \(100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2\)

\(\Leftrightarrow\left(100^2-98^2\right)+\left(103^2-101^2\right)+\left(105-107^2\right)+\left(94^2-96^2\right)=0\)

\(\Leftrightarrow2\left(100+98+103+101-105-107-94-96\right)=0\)

\(\Leftrightarrow2\times0=0\)(ĐPCM)

11 tháng 9 2019

sửa lại \(105^294^2\) thành \(105^2+94^2\)hộ mình

11 tháng 9 2019

Đặt a = 100, ta có :

 - Xét vế trái ta có :

    \(a^2+\left(a+3\right)^2+\left(a+5\right)^2+\left(a-6\right)^2\)

\(=a^2+a^2+6a+9+a^2+10a+25+a^2-12a+16\)

\(=4a^2+4a+70\)

- Xét vế phải ta có :

      \(\left(a+1\right)^2+\left(a-2\right)^2+\left(a-4\right)^2+\left(a+7\right)^2\)

\(=a^2+2a+1+a^2-4a+4+a^2-8a+16+a^2+14a+49\)

\(=4a^2+4a+70\)

        Vậy \(100^2+103^2+105^2+94^2=101^2+98^2+96^2+107^2\)(đpcm)

23 tháng 7 2019

a) \(\left(a+b\right)^2=[-\left(a+b\right)]^2=\left(-a-b\right)^2\)

b)\(\left(a-b\right)^2=[-\left(a-b\right)]^2=\left(b-a\right)^2\)

c)\(\left(a-b\right)^3=-[-\left(a-b\right)]^3=-\left(b-a\right)^3\)

18 tháng 7 2015

 

 

\(VT-VP=\left(100^2-96^2\right)+\left(105^2-101^2\right)-\left(107^2-103^2\right)-\left(98^2-94^2\right)\)

\(=\left(100-96\right)\left(100+96\right)+\left(105-101\right)\left(105+101\right)-\left(107-103\right)\left(107+103\right)-\left(98-94\right)\left(98+94\right)\)

\(=4\left(196+206-210-192\right)=0\)

=> VT=VP

20 tháng 7 2017

dùng hằng đẳng thức A^2 - B^2 = (A - B)(A + B) nhé phần b chuyển vế sang rồi dùng hđt là Okay

Giải thích rõ hơn được hong