chứng tỏ rằng: A= \(\frac{\text{1}}{2\text{1}}\) +\(\frac{2}{3\text{1}}\) +...+ \(\frac{20\text{1}3}{20\text{1}4}\) < 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5 :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{59}\)
\(A=1-\frac{1}{50}\)
từ trên ta có : \(1-\frac{1}{50}< 1\)
\(\Rightarrow A< 1\)
\(S=\frac{2016}{2.3:2}+\frac{2016}{3.4:2}+...+\frac{2016}{2015.2016:2}\)
\(S=\frac{4032}{2.3}+\frac{4032}{3.4}+...+\frac{4032}{2015.2016}\)
\(S=4032\left[\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\right]\)
\(S=4032\left[\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right]\)
\(S=4032\left[\frac{1}{2}-\frac{1}{2016}\right]=4032\cdot\frac{1007}{2016}\)
\(S=2014\)
S = \(2016+\frac{2016}{1+2}+\frac{2016}{1+2+3+}+...+\frac{2016}{1+2+3+...+2015}\)
S = \(2016+\left(\frac{2016}{1+2}+\frac{2016}{1+2+3}+...+\frac{2016}{1+2+3+...+2015}\right)\)
S = \(2016+2016.\left(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2015}\right)\)
đặt A = \(\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2015}\)
A = \(\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+...+\frac{1}{\left(1+2015\right).2015:2}\)
A = \(\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{2015.2016}\)
A = \(2.\left(\frac{1}{2}-\frac{1}{3}\right)+2.\left(\frac{1}{3}-\frac{1}{4}\right)+...+2.\left(\frac{1}{2015}-\frac{1}{2016}\right)\)
A = \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
A = \(2.\left(\frac{1}{2}-\frac{1}{2016}\right)\)
A = \(2.\frac{1007}{2016}=\frac{1007}{1008}\)
Thay A vào ta được :
S = \(2016+2016.\frac{1007}{1008}\)
S = \(2016.\left(1+\frac{1007}{1008}\right)\)
S = \(2016.\frac{2015}{1008}\)
S = \(4030\)
\(n^2>\left(n-1\right)\left(n+1\right)\Rightarrow\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right).\)
Do đó: \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}+\frac{1}{2014^2}< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2012.2014}+\frac{1}{2013.2015}=\)
\(=\frac{1}{2}[1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2014}+\frac{1}{2013}-\frac{1}{2015}]=\)
\(=\frac{1}{2}[1+\frac{1}{2}-\frac{1}{2014}-\frac{1}{2015}]=\frac{1}{2}[\frac{3}{2}-\frac{1}{2014}-\frac{1}{2015}]=\frac{3}{4}-\frac{1}{2}\left(\frac{1}{2014}+\frac{1}{2015}\right)< \frac{3}{4}.\)
\(\frac{2017}{1.2.3}+\frac{2017}{2.3.4}+\frac{2017}{3.4.5}+...+\frac{2017}{19.20.21}\)
\(=2017\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{19.20.21}\right)\)
\(=2017.\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{19.20.21}\right)\)
\(=2017.\left(1-\frac{1}{2}-\frac{1}{3}-\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{4}\right)-...-\left(\frac{1}{19}-\frac{1}{20}-\frac{1}{21}\right)\right)\)
\(=2017.\left(1+\frac{1}{21}\right)\)phá ngoặc trước dấu trừ đổi dấu,rút gọn:
\(=2017.\frac{20}{21}=\frac{40340}{21}\)
\(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}\)
\(=\frac{1.2}{2!}-\frac{1}{2!}+\frac{2.3}{3!}-\frac{1}{3!}+\frac{3.4}{4!}-\frac{1}{4!}+...+\frac{99.100}{100!}-\frac{1}{100!}\)
\(=1-\frac{1}{2!}+1-\frac{1}{3!}+\frac{1}{2!}-\frac{1}{4!}+...+\frac{1}{98!}-\frac{1}{100!}\)
\(=2-\frac{1}{99!}-\frac{1}{100!}< 2\)
Vậy \(\frac{1.2-1}{2!}+\frac{2.3-1}{3!}+\frac{3.4-1}{4!}+...+\frac{99.100-1}{100!}< 2\left(đpcm\right)\)
\(P=\frac{1}{2}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}......\frac{399}{400}\)
\(P=\frac{1.3.4.5....399}{2.4.5.6.....400}\)
\(P=\frac{1.3}{2.400}\)
\(P=\frac{3}{800}\)
Vì \(\frac{3}{800}< \frac{40}{800}\)
\(\Rightarrow P< \frac{40}{800}\)
\(\Rightarrow P< \frac{1}{20}\left(đpcm\right)\)
lon hon 1 nha ban
sửa lại đề : Chứng tỏ rằng : A = \(\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}< 1\)
bài làm
A = \(\frac{1}{2!}+\frac{2}{3!}+...+\frac{2013}{2014!}\)
A = \(\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{2014-1}{2014!}\)
A = \(1-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{2014}{2014!}-\frac{1}{2014!}\)
A = \(1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2013!}-\frac{1}{2014!}\)
A = \(1-\frac{1}{2014!}< 1\)