Tính giá trị biểu thức:
a) \(\dfrac{2}{3}\)x2y + 3x2y + x2y tại x= 3, y= \(-\dfrac{1}{7}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a: Ta có: C=A+B
\(=x^2-2y+xy+1+x^2+y-x^2y^2-1\)
\(=2x^2-y+xy-x^2y^2\)
b: Ta có: C+A=B
\(\Leftrightarrow C=B-A\)
\(=x^2+y-x^2y^2-1-x^2+2y-xy-1\)
\(=-x^2y^2+3y-xy-2\)
\(A=2x+xy^2-x^2y-2y\)
\(=2\left(x-y\right)-xy\left(x-y\right)\)
\(=\left(x-y\right)\left(2-xy\right)\)
\(=\left(-\dfrac{1}{2}-\dfrac{-1}{3}\right)\left(2-\dfrac{-1}{2}\cdot\dfrac{-1}{3}\right)\)
\(=\left(\dfrac{1}{3}-\dfrac{1}{2}\right)\cdot\left(2-\dfrac{1}{6}\right)\)
\(=\dfrac{-1}{6}\cdot\dfrac{11}{6}=-\dfrac{11}{36}\)
Chắc đề bài là \(Q=\dfrac{3}{9x^2+6xy+y^2}+\dfrac{3}{3x^2+6xy+2y^2}\)
Từ giả thiết ta có:
\(2x^3+2xy^2+xy^2+y^3=2\left(x^2+y^2\right)\)
\(\Leftrightarrow2x\left(x^2+y^2\right)+y\left(x^2+y^2\right)=2\left(x^2+y^2\right)\)
\(\Leftrightarrow2x+y=2\)
Do đó:
\(Q=3\left(\dfrac{1}{9x^2+6xy+y^2}+\dfrac{1}{3x^2+6xy+2y^2}\right)\)
\(Q\ge\dfrac{3.4}{12x^2+12xy+3y^2}=\dfrac{4}{\left(2x+y\right)^2}=1\)
\(Q_{min}=1\) khi \(\left\{{}\begin{matrix}2x+y=2\\9x^2+6xy+y^2=3x^2+6xy+2y^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{6}-2\\y=6-2\sqrt{6}\end{matrix}\right.\)
Đề bn ghi ko rõ nên mk lấy đề trên mạng còn bài mk tự lm nha
a, \(A=x^2y+\frac{1}{3}xy^2+\frac{3}{5}xy^2-2xy+3x^2y-\frac{2}{3}\)
\(=x^2y+\frac{xy^2}{3}+\frac{3}{5}xy^2-2xy+3x^2y-\frac{2}{3}\)
\(=x^2y+\frac{xy^2}{3}+\frac{3xy^2}{5}-2xy+3x^2y-\frac{2}{3}\)
\(=4x^2y+\frac{14xy^2}{15}-2xy-\frac{2}{3}\)
b, Khi thay x = -1 và y = 1/2 thì đa thức trên đc
\(A=-1^2.\frac{1}{2}+\frac{1}{3}.\left(-1\right).\left(\frac{1}{2}\right)^2+\frac{3}{5}\left(-1\right).\left(\frac{1}{2}\right)^2-2\left(-1\right).\left(\frac{1}{2}\right)+3\left(-1\right)^2.\left(\frac{1}{2}\right)-\frac{2}{3}\)
\(=-\frac{1}{2}-\frac{1}{12}-\frac{3}{20}-2\left(-1\right).\frac{1}{4}+3.1.\frac{1}{2}-\frac{2}{3}\)
\(=-\frac{1}{2}-\frac{1}{12}-\frac{3}{20}+2.\frac{1}{4}+3.\frac{1}{2}-\frac{2}{3}\)
\(=-\frac{1}{2}-\frac{1}{12}-\frac{3}{20}+\frac{1}{2}+\frac{3}{2}-\frac{2}{3}\)
\(=\frac{3}{5}\)
ヅViruSş ミ★Čøɾøŋα★彡
Em thay nhầm câu b rồi em!
Vào sửa lại đi!
b: \(N=a^3-3a^2-a\left(3-a\right)\)
\(=a^2\left(a-3\right)+a\left(a-3\right)\)
\(=a\left(a-3\right)\left(a+1\right)\)
Thay x = 1; y = -1; z = 3 vào biểu thức, ta có:
(12(-1) – 2.1 – 2.3).1(-1) = (-1 – 2 – 6).(-1) = (-9).(-1) = 9
Vậy giá trị của biểu thức (x2y – 2x – 2z)xy bằng 9 tại x = 1; y = -1; z = 3
\(\left(x^2y-8x+y-4\right)log_3y=2log_3\dfrac{\sqrt{8x-y+4}}{x}-log_3y=log_3\dfrac{8x-y+4}{x^2y}\)
\(\Rightarrow log_3\left(x^2y\right)+x^2y.log_3y=log_3\left(8x-y+4\right)+\left(8x-y+4\right)log_3y\)
Xét hàm \(f\left(t\right)=log_3t+t.log_3y\Rightarrow f'\left(t\right)=\dfrac{1}{1.ln3}+log_3y>0\)
\(\Rightarrow x^2y=8x-y+4\)
\(\Rightarrow y=\dfrac{8x+4}{x^2+1}\)
Tìm y để pt trên có nghiệm lớn hơn 1, lập BBT \(\Rightarrow y< 6\)
\(A=4x^2y+\dfrac{14}{15}xy^2-2xy-\dfrac{2}{3}\) bậc : 3
\(B=2xy^2z-1\) bậc :4
+ Thu gọn :
\(A=4x^2y+\dfrac{14}{15}xy^2-2xy-\dfrac{2}{3}\)
\(B=2xy^2z-1\)
+ Bậc
Đa thức \(A\) có 4 hạng tử :
\(4x^2y\) có bậc \(3\)
\(\dfrac{14}{15}xy^2\) có bậc \(3\)
\(-2xy\) có bậc \(2\)
\(-\dfrac{2}{3}\) có bậc \(0\)
Đa thức \(B\) có \(2\) hạng tử :
\(2xy^2z\) có bậc \(4\)
\(-1\) có bậc \(0\)
a: A=x^2y(2/3+3+1)=14/3*x^2y
=14/3*3^2*(-1/7)
=-2*3=-6