5(5\(\sqrt{2}\) +2\(\sqrt{5}\)). \(\sqrt{5}\) -\(\sqrt{250}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a, (2 sqrt 3 + sqrt 5)sqrt 3 - sqrt 60`
`= 2 sqrt 3 . sqrt 3 + sqrt 5 . sqrt 3 - sqrt(4 . 15)`
`= 2 . 3 + sqrt 15 - 2 sqrt 15`.
`= 6 - sqrt 15`.
`b, (5 sqrt 2 + 2 sqrt 5)sqrt 5 - sqrt250`
`= 5 sqrt 2 . sqrt 5 + 2 sqrt 5 . sqrt 5 - sqrt(25.10)`
`= 5 sqrt 10 + 10 - 5 sqrt 10`
`= 10`.
5) \(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\)
\(=2\sqrt{3}\cdot\sqrt{3}+\sqrt{5}\cdot\sqrt{3}-\sqrt{2^2\cdot15}\)
\(=2\cdot3+\sqrt{15}-2\sqrt{15}\)
\(=6+\left(1-2\right)\sqrt{15}\)
\(=6-\sqrt{15}\)
6) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(=5\sqrt{2}\cdot\sqrt{5}+2\sqrt{5}\cdot\sqrt{5}-\sqrt{5^2\cdot10}\)
\(=5\sqrt{10}+2\cdot5-5\sqrt{10}\)
\(=\left(5-5\right)\sqrt{10}+10\)
\(=0+10\)
\(=10\)
\(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(=5\sqrt{10}+2.5-\sqrt{\left(25.10\right)}\)
\(=5\sqrt{10}+10-5\sqrt{10}\)
\(=10\)
Vậy : \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}=10\)
(5√2+2√5)√5−√250
=5√10+2.5−√(25.10)
=5√10+10−5√10
=10
Vậy : (5√2+2√5)√5−√250=10
a) \(2\sqrt{98}-3\sqrt{18}+\dfrac{1}{2}\sqrt{32}=14\sqrt{2}-9\sqrt{2}+2\sqrt{2}=7\sqrt{2}\)
b) \(\left(5\sqrt{2}+2\sqrt{5}\right).\sqrt{5}-\sqrt{250}=5\sqrt{10}+10-5\sqrt{10}=10\)
c) \(\left(2\sqrt{3}-5\sqrt{2}\right).\sqrt{3}-\sqrt{36}=6-5\sqrt{6}-6=5\sqrt{6}\)
d) \(3\sqrt{48}+2\sqrt{27}-\dfrac{1}{3}\sqrt{243}=12\sqrt{3}+6\sqrt{3}-3\sqrt{3}=15\sqrt{3}\)
e) \(6\sqrt{\dfrac{1}{3}}+\dfrac{9}{\sqrt{3}}-\dfrac{2}{\sqrt{3}-1}=2\sqrt{3}+3\sqrt{3}=\left(\sqrt{3}+1\right)=4\sqrt{3}-1\)
f) \(4\sqrt{\dfrac{1}{2}}-\dfrac{6}{\sqrt{2}}.\dfrac{2}{\sqrt{2}+1}=2\sqrt{2}-\left(12-6\sqrt{2}\right)=8\sqrt{2}-12\)
\(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(=5\sqrt{10}+2.5-\sqrt{\left(25.10\right)}\)
\(=5\sqrt{10}+10-5\sqrt{10}\)
\(=10\)
\(\text{a)}\)\(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(\Leftrightarrow5\sqrt{10}+10-\sqrt{250}\)
\(\Leftrightarrow5\sqrt{10}+10-5\sqrt{10}\)
\(\Leftrightarrow10\)
\(\text{b)}\)\(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}-2\sqrt{21}-7+2\sqrt{21}\)
\(\Leftrightarrow4\sqrt{21}-7\)
a)
\(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\)
\(=\sqrt{5}\left(5\sqrt{2}+2\sqrt{5}-5\sqrt{2}\right)\)
\(=\sqrt{5}.2\sqrt{5}=10\)
b)
\(\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2\)
\(=5+2\sqrt{6}+5-2\sqrt{6}=10\)
c)
\(\dfrac{2}{\sqrt{5}-\sqrt{3}}+\dfrac{3}{\sqrt{6}+\sqrt{3}}\)
\(=\sqrt{5}+\sqrt{3}+\sqrt{6}-\sqrt{3}=\sqrt{5}+\sqrt{6}\)
d)
\(\dfrac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)
\(=\dfrac{\left(\sqrt{x-2}-1\right)^2}{\sqrt{x-2}-1}=\sqrt{x-2}-1\)
a) \(\left(2\sqrt{3}+\sqrt{5}\right)\sqrt{3}-\sqrt{60}\) = \(6+\sqrt{15}-2\sqrt{15}\)
= \(6-\sqrt{15}\)
b) \(\left(5\sqrt{2}+2\sqrt{5}\right)\sqrt{5}-\sqrt{250}\) = \(5\sqrt{10}+10-5\sqrt{10}\) = \(10\)
c) \(\left(\sqrt{28}-\sqrt{12}-\sqrt{7}\right)\sqrt{7}+2\sqrt{21}\) = \(14-2\sqrt{21}-7+2\sqrt{21}\)
= \(7\)
d) \(\left(\sqrt{99}-\sqrt{18}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)
= \(33-3\sqrt{22}-11+3\sqrt{22}\) = \(22\)
a)(2√3+√5)√3-√60
=6+√15-2√15
=6-√15
b)(5√2+2√5)√5-√250
=5√10+10-5√10
=10
c)(√28-√12-√7)√7+2√21
=14-2√21-7+2√21
=7
d)(√99-√18-√11)√11+3√22
=33-3√22-11+3√22
=22
a)\(\left(5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}-\sqrt{250}\)
\(=5\sqrt{10}+10-5\sqrt{10}\\ =10\)
b)\(\dfrac{2\sqrt{3}}{\sqrt{6}-2}-\dfrac{2\sqrt{3}}{\sqrt{6}+2}\)
\(=\dfrac{2\sqrt{3}}{\sqrt{2}\left(\sqrt{3}-\sqrt{2}\right)}-\dfrac{2\sqrt{3}}{\sqrt{2}\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{\sqrt{6}\left(\sqrt{3}+\sqrt{2}\right)-\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}\)
\(=\dfrac{3\sqrt{2}+2\sqrt{3}-3\sqrt{2}+2\sqrt{3}}{3-2}\)
\(4\sqrt{3}\)
\(5\left(5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}-\sqrt{250}\)
\(=5\left(5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}-\sqrt{25\cdot10}\)
\(=5\left(5\sqrt{2}+2\sqrt{5}\right)\cdot\sqrt{5}-5\sqrt{10}\)
\(=\left(25\sqrt{2}+10\sqrt{5}\right)\cdot\sqrt{5}-5\sqrt{10}\)
\(=25\sqrt{10}+10\cdot5-5\sqrt{10}\)
\(=20\sqrt{10}+50\)
(5căn 2+2*căn 5)*căn 5-căn 250
=5căn 10+10-5căn 10
=10