cho ABCD là hình thang vuông tại A và D.Đường chéo BD\(\perp\)BC.Biết AD=12 cm, DC=25 cm.Tính độ dài AB, BC và BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham Khảo tại link
https://hoc24.vn/cau-hoi/cho-abcd-la-hinh-thang-vuong-tai-a-va-d-duong-cheo-bd-vuong-goc-voi-bc-biet-ad-12-cm-dc-25-cm-tinh-do-dai-ab-bc-bd.189488030358
Hạ BE ⊥ CD ( E ∈ CD )
Xét △BCD vuông tại B có BE ⊥ CD. Áp dụng hệ thức lượng trong tam giác vuông, ta có:
BE\(^2\) = DE . EC hay DE . ED = 12\(^2\) =144 cm (*)
Ta có:
DE + EC = CD = 25 cm ⇒ DE = 25 − EC
Thay vào (*) ta có: ( 25 − EC ) . EC = 144
⇒ 25 EC − EC\(^2\) = 144
⇒ EC\(^2\) − 25 EC + 144 = 0
⇒ ( EC − 9 )( EC − 16 ) = 0
\(\Rightarrow\left[{}\begin{matrix}EC=9\\EC=16\end{matrix}\right.\)
Nếu EC = 9 cm ⇒ DE = 16 cm
Xét tứ giác ABED có ˆ\(\widehat{A}=\widehat{D}=\widehat{E}=90^0\) nên là hình chữ nhật
⇒ AB = DE ; AD = BE
Hay AB = 16 cm và BE = 12cm
Áp dụng định lý Pytago trong tam giác vuông BED ta có: \(BD^2=BE^2+DE^2=12^2+16^2=400\) ⇒ BD = 20 cm
Áp dụng định lý Pytago trong tam giác vuông BEC, ta có: \(BC^2=BE^2+CE^2=12^2=92=225\)
⇒ BC = 15 cm
Tương tự với trường hợp EC = 16cm ⇒ DE = 9 cm
Ta suy ra: AB = 9 cm ; BD = 15 cm và BC = 20 cm
Kẻ BE vuông góc CD \(\Rightarrow ABED\) là hcn (tứ giác 4 góc vuông) \(\Rightarrow AB=DE\)
Đặt \(AB=x>0\)
Áp dụng định lý Pitago cho tam giác vuông ABD:
\(AB^2+AD^2=BD^2\Leftrightarrow BD^2=x^2+144\) (1)
Áp dụng hệ thức lượng cho tam giác vuông BDC:
\(BD^2=DE.DC\Leftrightarrow BD^2=25x\) (2)
(1);(2) \(\Rightarrow x^2+144=25x\Rightarrow x^2-25x+144=0\Rightarrow\left[{}\begin{matrix}x=16\\x=9\end{matrix}\right.\)
- Với \(AB=16\left(cm\right)\Rightarrow BD=\sqrt{AD^2+AB^2}=20\left(cm\right)\)
\(BC=\sqrt{DC^2-BD^2}=15\left(cm\right)\)
- Với \(AB=9\left(cm\right)\Rightarrow BD=\sqrt{AD^2+AB^2}=15\left(cm\right)\)
\(BC=\sqrt{DC^2-BD^2}=20\left(cm\right)\)
Áp dụng các hệ thức lượng trong tam giác vuông BDC cùng chú ý độ dài đường cao hạ từ B xuống CD bằng AD, ta tính được : AB = 9cm, BD =15cm, hoặc AB = 16cm, BC = 15cm, BD = 20cm
a, Tính được DB=15cm. A D B ^ ≈ 37 0 ; A B D ^ ≈ 53 0
b, Tính được AO=7,2cm, DO=9,6cm và AC=20cm
c, Kẻ OK ⊥ DC tại K
DH=AB=9cm, DC=16cm, DK=5,76cm và OK=7,68cm
Từ đó S D O H = O K . D H 2 = 7 , 68 . 9 2 = 34,56 c m 2