so sánh: 1010+1/1011+1 và 1011-1/1012-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
A=10^11-1/10^12-1
10A=10.(10^11-1)/10^12-1
10A=10^12-10/10^12-1
10A=10^12-1-9/10^12-1
10A=10^12-1/10^12-1 + -9/10^12-1
10A=1+ -9/10^12-1
B=10^10+1/10^11+1
10B=10.(10^10+1)/10^11+1
10B=10^11+10/10^11+1
10B=10^11+1+9/10^11+1
10B=10^11+1/10^11+1 + 9/10^11+1
10B=1 + 9/10^11+1
Vì -9/10^12-1 < 9/10^11+1 nên 10A < 10B
=>A < B
Chúc bạn học tốt!
Giải:
Ta có: A=1011-1/1012-1
10A=10.(1011-1)/1012-1
10A=1012-10/1012-1
10A=1012-1-9/1012-1
10A=1012-1/1012-1 - 9/1012-1
10A=1-9/1012-1
Tương tự: B=1010+1/1011+1
10B=1+9/1011+1
Vì -9/1012-1 < 9/1011+1 nên 10A < 10B
Vậy A<B
Chúc bạn học tốt!
\(A=\dfrac{1011-1}{1012-1}=\dfrac{1010}{1011}\)
\(B=\dfrac{1010+1}{1011+1}=\dfrac{1011}{1012}\)
Ta có :
\(1-A=1-\dfrac{1010}{1011}=\dfrac{1}{1011}\)
\(1-B=1-\dfrac{1011}{1012}=\dfrac{1}{1012}\)
NHận thấy \(\dfrac{1}{1011}>\dfrac{1}{1012}\Rightarrow A< B\)
Ta có:
\(A=\dfrac{1011-1}{1012-1}=\dfrac{1010}{1011}\)
\(B=\dfrac{1010+1}{1011+1}=\dfrac{1011}{1012}\)
Ta lại có:
\(1-\dfrac{1010}{1011}=\dfrac{1}{1011}\)
\(1-\dfrac{1011}{1012}=\dfrac{1}{1012}\)
Vì \(\dfrac{1}{1011}>\dfrac{1}{1012}\Rightarrow\dfrac{1010}{1011}< \dfrac{1011}{1012}\Rightarrow A< B\)
Ta có : Q=\(\frac{1010+1011+1012}{1011+1012+1013}\)=\(\frac{1010}{1011+1012+1013}+\frac{1011}{1011+1012+1013}+\frac{1012}{1011+1012+1013}\)
Vì1010/1011>1010/1011+1012+1013
1011/1012>1011/1011+1012+1013
1012/1013>1012/1011+1012+1013
=>P>Q
Ta có:
\(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}-1-\frac{1}{2}-...-\frac{1}{1009}\)
\(=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2018}=B\)
\(C=\left(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2017\cdot2018}\right)-\)\(\left(\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2017}\right)\)
Đặt \(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2017\cdot2018}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2017}-\frac{1}{2018}\)
\(\Rightarrow A=\left(1+\frac{1}{3}+...+\frac{1}{2017}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)-2\cdot\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(\Rightarrow A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2009}\right)\)
\(\Rightarrow A=\frac{1}{1010}+\frac{1}{1011}+\frac{1}{1012}+..+\frac{1}{2017}\)
\(\Rightarrow C=\left(\frac{1}{101}+\frac{1}{1011}+\frac{1}{1012}+...+\frac{1}{2018}\right)-\left(\frac{1}{1010}+\frac{1}{1012}+...+\frac{1}{2017}\right)\)
\(\Rightarrow C=\frac{1}{2018}\)
Bạn có thể viết lại đề theo phân số như thế này được không \(\frac{7}{12}\)bạn viết thế mk ko hiểu
Bn viết lại đề nhanh mk làm cho
Chúc bn học tốt
Đặt: \(\hept{\begin{cases}A=\frac{10^{10}+1}{10^{11}+1}\\B=\frac{10^{11}-1}{10^{12}-1}\end{cases}}\)
Ta có:
\(\hept{\begin{cases}10A=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}\\10B=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}\end{cases}}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
bài này viết mỏi tay lắm!!!