22015 + 32014
tìm số tận cùng
17^2023 tìm số tận cùng
^ là mũ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(2^1=..2\)
\(2^2=..4\)
\(2^3=..8\)
\(2^4=..6\)
\(2^5=..2\)
\(2^6=..4\)
\(...\)
Lần lượt như vậy, ta sẽ có:
\(2^{4k+1}=..2\)
\(2^{4k+2}=..4\)
\(2^{4k+3}=..8\)
\(2^{4k}=..6\)
Ta có: \(2015=4.503+3\)
\(=>2015=4k+3\)
\(=>2^{2015}=..8\)
Ta lại có: \(3^1=..3\)
\(3^2=..9\)
\(3^3=..7\)
\(3^4=..1\)
\(3^5=..3\)
\(3^6=..9\)
\(...\)
Lần lượt như vậy,ta có quy luật:
\(3^{4k+1}=..3\)
\(3^{4k+2}=..9\)
\(3^{4k+3}=..7\)
\(3^{4k}=..1\)
Ta có: \(2014=4.503+2\)
\(=>2014=4k+2\)
\(=>3^{2014}=..9\)
VẬY: \(2^{2015}+3^{2014}=..8+..9=..7\)
=> \(2^{2015}+3^{2014}\) có tận cùng là 7.
------------------------------------------------------------
Ta có: \(17^1=..7\)
\(17^2=..9\)
\(17^3=..3\)
\(17^4=..1\)
\(17^5=..7\)
\(17^6=..9\)
Lần lượt như vậy, ta có quy luật:
\(17^{4k+1}=..7\)
\(17^{4k+2}=..9\)
\(17^{4k+3}=..3\)
\(17^{4k}=..1\)
TA CÓ; \(2023=4.505+3\)
\(=>2023=4k+3\)
\(=>17^{2023}=..3\)
Vậy \(17^{2023}\) có tận cùng là 3.
Ta có: \(2^{2023}=2^{2020+3}=2^{2020}.2^3\)
\(=\left(2^4\right)^{505}.2^3=16^{505}.8\)
\(=\left(....6\right).8\)
Vậy chữ số tận cùng sẽ luôn là 8
Ta có:
\(2^{2023}\)
\(=2^{2020+3}\)
\(=\left(2^4\right)^{505}.2^3\)
\(=16^{505}.8\)
\(=\left(...6\right)^8\)
\(=8\)
Vậy tận cùng của \(2^{2023}là8\)
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
1) \(S=2.2.2..2\left(2023.số.2\right)\)
\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)
2) \(S=3.13.23...2023\)
Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)
\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)
\(\Rightarrow S=\overline{.....7}\)
3) \(S=4.4.4...4\left(2023.số.4\right)\)
\(\Rightarrow S=4^{2023}=\overline{.....4}\)
4) \(S=7.17.27.....2017\)
Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)
\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)
\(\Rightarrow S=\overline{.....9}\)
4 mũ chẵn có tận cùng bằng 6
nen 2014
2014có tận cùng bằng 6
2100 = 24.25 = (...6) có chữ số âận cùng là 6.
71991 = 74.497 = (...1) có chữ số tận cùng là 1
2100=24.25=(...6) có chữ số tận cùng là 6
71991=74.497=(...1) có chữ số tận cùng là 1
Ta có : 2 ^ 4 = 16 có tận cùng là 6
Nên ( 2 ^ 4 ) ^ 13 = 2 ^ 52 có tận cùng là 6
=> 2 ^ 52 . 2 = 2 ^ 53 có tận cùng là 2
Ta có : 6 ^ n với n là số tụ nhiên khác 0 có tận cùng là 6
Nên : 6 ^ 70 có tận cùng là 6
Do đó : 2 ^ 53 . 6 ^ 70 có tận cùng là 2
2009²⁰²³ = 2009²⁰²².2009
Ta có:
2009 ≡ 9 (mod 10)
2009² ≡ 1 (mod 10)
2009²⁰²² ≡ (2009²)¹⁰¹¹ (mod 10) ≡ 1¹⁰¹¹(mod 10) ≡ 1 (mod 10)
2009²⁰²³ ≡ 2009²⁰²².2009 (mod 10) ≡ 1.9 (mod 10) ≡ 9 (mod 10)
Vậy chữ số tận cùng của 2009²⁰²³ là 9
a, Áp dụng các t/c các số tận cùng là 1 và 6khi tăng bậc số tận cùng vẫn là 6 và 6.
22015=2.22014=2.41007=2.4.41006=8.16503=8.(...6)=(...8)
32014=91007=9.91006=9.81503=9.(...1)=(...9)
=22015 + 32014 =(...8)+(...9)=(...7)
b, 172023≡72023=7.72022=7.491011=7.49.491010=7.49.2401505=(...3)