Cho a,b>0 a+b<=1 Tìm Min P=a^2+b^2+1/a^2+1/b^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Một số bất đẳng thức thường được dùng (chứng minh rất đơn giản)
Với a, b > 0, ta có:
\(a^2+b^2\ge2ab\)
\(\left(a+b\right)^2\ge4ab\)
\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" của các bất đẳng thức trên đều xảy ra khi a = b.
Phân phối số hạng hợp lí để áp dụng Côsi
\(1\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{2ab}\ge\frac{4}{a^2+b^2+2ab}+\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{4}{\left(a+b\right)^2}+\frac{2}{\left(a+b\right)^2}\)
\(\ge6\)
Dấu "=" xảy ra khi a = b = 1/2.
\(2\text{) }P\ge\frac{4}{a^2+b^2+2ab}=\frac{4}{\left(a+b\right)^2}\ge4\)
\(3\text{) }P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+4ab+\frac{1}{4ab}\)
\(\ge\frac{1}{\left(a+b\right)^2}+2\sqrt{\frac{1}{4ab}.4ab}+\frac{1}{\left(a+b\right)^2}\ge1+2+1=4\)
\(ab\le\frac{\left(a+b\right)^2}{4}=\frac{1}{16}\)
Ta có: \(\frac{1}{a^2+b^2}+\frac{2}{ab}+ab\)
\(=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{3}{2ab}+384ab-383ab\)
\(\ge\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{3}{2ab}.384ab}-383.\frac{1}{16}\)
\(=\frac{4}{\left(a+b\right)^2}+2.24-\frac{383}{16}=\frac{641}{16}\)
Dấu "=" xảy ra <=> a = b = 1/4
Áp dụng BĐT cauchy-Schwarz dạng Engel ta thu được:
\(E\ge\frac{\left(a+b\right)^2}{a+b-2}=\frac{t^2}{t-2}\left(t=a+b>2\right)\)
Ta có: \(E\ge\frac{t^2}{t-2}+4\left(t-2\right)-4t+8\ge2\sqrt{\frac{t^2}{t-2}.4\left(t-2\right)}-4t+8\)
\(=4t-4t+8=8\)
Đẳng thức xảy ra khi a = b = 2 (chị tự giải kĩ ra nha)
Áp dụng bđt Cô si ta có:
\(E=\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge2\sqrt{\frac{a^2}{a-1}.\frac{b^2}{b-1}}\)
Mặt khác:\(\frac{a^2}{a-1}=\frac{a^2-4a+4+4a-4}{a-1}=\frac{\left(a-2\right)^2}{a-1}+4\ge4\)
Tương tự: \(\frac{b^2}{b-1}\ge4\).Nhân theo vế suy ra \(E\ge8\)
\("="\Leftrightarrow a=b=2\)