B1Tìm cặp số nguyên sao cho: x+y=xy+3
B2 Cho x+y=3. Tìm GTLN của hạng tử A=xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x + 3y = xy + 3
=> -xy + x = -3y + 3
=> x[-y + 1] = 3[-y + 1]
=> x = 3
Vậy với mọi y và x = 3 thì ta đc pt đúng
\(x+xy+y=1\)
\(2x+2xy+2y=2\)
\(2x\left(1+y\right)+2y=2\)
\(2x\left(y+1\right)+2y+2=4\)
\(2x\left(y+1\right)+2\left(y+1\right)=4\)
\(\left(2x+2\right)\left(y+1\right)=4\)
\(2\left(x+1\right)\left(y+1\right)=4\)
\(\left(x+1\right)\left(y+1\right)=2\)
\(TH1:\left\{{}\begin{matrix}x+1=1\\y+1=2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
\(TH2:\left\{{}\begin{matrix}x+1=2\\y+1=1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
\(TH3:\left\{{}\begin{matrix}x+1=-1\\y+1=-2\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=-2\\y=-3\end{matrix}\right.\)
\(TH4:\left\{{}\begin{matrix}x+1=-2\\y+1=-1\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\)
\(Vậy...\)
x+xy+y=1⇔x(y+1)+y+1=2⇔(x+1)(y+1)=2
⇒(x+1;y+1)=(-1;-2),(-2;-1),(1;2),(2;1)
sau tự tính nhé :3
\(a,\Leftrightarrow y\left(x+1\right)-3\left(x+1\right)=5\\ \Leftrightarrow\left(x+1\right)\left(y-3\right)=5=5.1=\left(-5\right)\left(-1\right)\\ TH_1:\left\{{}\begin{matrix}x+1=1\\y-3=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=8\end{matrix}\right.\\ TH_2:\left\{{}\begin{matrix}x+1=5\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=4\end{matrix}\right.\\ TH_3:\left\{{}\begin{matrix}x+1=-5\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\\ TH_4:\left\{{}\begin{matrix}x+1=-1\\y-3=-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\left(0;8\right);\left(4;4\right);\left(-6;2\right);\left(-2;-2\right)\right\}\)
\(b,\Leftrightarrow6\left(n-1\right)+11⋮n-1\\ \Leftrightarrow n-1\in\left\{-11;-1;1;11\right\}\\ \Leftrightarrow n\in\left\{-10;0;2;12\right\}\)
xy = -(x+ y)
<=> xy+x+y=0
<=> x(y+1)+(y+1)=1
<=> (x+1)(y+1)=1
Lập bảng là ra
xy -x - y =2
x.( y-1) = 2+ y
\(x=\frac{2+y}{y-1}=\frac{y-1+3}{y-1}=\frac{y-1}{y-1}+\frac{3}{y-1}=1+\frac{3}{y-1}\)
Để x nguyên
\(\Rightarrow\frac{3}{y-1}\in z\Rightarrow3⋮y-1\Rightarrow y-1\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu y- 1 = 3 => y =4 (TM) => x = 1+ 3/4-1 = 1 + 1 =2 => x= 2 (TM)
y-1 =-3 => y =-2 (TM) => x = 1+ 3/-2-1 = 1+(-1) =0 => x =0 (TM)
y -1 = 1 => y=2 (TM) => x = 1+ 3/2-1 = 1+3 =4 => x =4 (TM)
y-1 =-1 => y=0 (TM) => x = 1+ 3/0-1 = 1+(-3) = -2 => x = -1 (TM)
KL: (x;y) =........................................
Chúc bn học tốt !!!!!
Ta có :
\(x^2+y^2+xy=3\)
\(\Rightarrow\left(x+y\right)^2-xy=3\)
\(\Rightarrow \left(x+y\right)^2=3+xy\)
hay \(S^2=3+xy\le3+\frac{\left(x+y\right)^2}{4}=3+\frac{S^2}{4}\)
\(\Rightarrow S^2\le3+\frac{S^2}{4}\)
\(\Rightarrow S^2\le4\)
\(\Rightarrow-2\le S\le2\)
GTLN của S = 2
Bài 1:
$xy+3=x+y$
$\Leftrightarrow xy-x-y+3=0$
$\Leftrightarrow x(y-1)-(y-1)+2=0$
$\Leftrightarrow (x-1)(y-1)+2=0$
$\Leftrightarrow (x-1)(y-1)=-2$
Vì $x,y$ nguyên nên $x-1, y-1$ nguyên. Khi đó:
$(x-1, y-1)=(2, -1), (-2, 1), (1, -2), (-1, 2)$
Đến đây bạn dễ dàng tìm được giá trị $x,y$ thỏa mãn.
Bài 2:
$x+y=3\Rightarrow y=3-x$. Khi đó:
$A=xy=x(3-x)=3x-x^2$
$-A=x^2-3x=(x^2-3x+1,5^2)-1,5^2=(x-1,5)^2-\frac{9}{4}\geq \frac{-9}{4}$
$\Rightarrow A\leq \frac{9}{4}$
Vậy $A_{\max}=\frac{9}{4}$