K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2023

a) (x² + 2)²

= (x²)² + 2.x².2 + 2²

= x⁴ + 4x² + 4

b) (x + y + z)²

= [(x + y) + z]²

= (x + y)² + 2(x + y).z + z²

= x² + 2xy + y² + 2xz + 2yz + z²

= x² + y² + z² + 2xy + 2xz + 2yz

Bài 2: 

a: Ta có: \(M=\left(x+y\right)^3+2x^2+4xy+2y^2\)

\(=\left(x+y\right)^3+2\cdot\left(x+y\right)^2\)

\(=7^3+2\cdot7^2=441\)

9 tháng 7 2023

a) 25x² - 16

= (5x)² - 4²

= (5x - 4)(5x + 4)

b) 16a² - 9b²

= (4a)² - (3b)²

= (4a - 3b)(4a + 3b)

c) 8x³ + 1

= (2x)³ + 1³

= (2x + 1)(4x² - 2x + 1)

d) 125x³ + 27y³

= (5x)³ + (3y)³

= (5x + 3y)(25x² - 15xy + 9y²)

e) 8x³ - 125

= (2x)³ - 5³

= (2x - 5)(4x² + 10x + 25)

g) 27x³ - y³

= (3x)³ - y³

= (3x - y)(9x² + 3xy + y²)

9 tháng 7 2023

a) \(25x^2-16=\left(5x-4\right)\left(5x+4\right)\)

b) \(16a^2-9b^2=\left(4a-3b\right)\left(4a+3b\right)\)

c) \(8x^3+1=\left(2x+1\right)\left(4x^2-2x+1\right)\)

d) \(125x^3+27y^3=\left(5x+3y\right)\left(25x^2-15xy+9y^2\right)\)

e) \(8x^3-125=\left(2x-5\right)\left(4x^2-10x+25\right)\)

g) \(27x^3-y^3=\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)

22 tháng 9 2019

\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}\)

       \(=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}\)

         \(=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

           \(=\frac{\left(x+y+z\right)\left(x+y+z\right)}{\left(x+y+z\right)\left(x-y+z\right)}\)

               \(=\frac{x+y-z}{x-y+z}\)

Ta thay : \(x=0;y=2009;z=2010\) ta được :

\(A=\frac{0+2009-2010}{0-2009+2010}=-\frac{1}{1}=-1\)

Chúc bạn học tốt !!!

22 tháng 9 2019

\(A=\frac{x^2+y^2-z^2+2xy}{x^2-y^2+z^2+2xz}=\frac{\left(x^2+2xy+y^2\right)-z^2}{\left(x^2+2xz+z^2\right)-y^2}=\frac{\left(x+y\right)^2-z^2}{\left(x+z\right)^2-y^2}\)

\(=\frac{\left(x+y+z\right)\left(x+y-z\right)}{\left(x+y+z\right)\left(x-y+z\right)}=\frac{x+y-z}{x-y+z}\)

Thay \(\hept{\begin{cases}x=0\\y=2009\\z=2010\end{cases}}\) vào biểu thức :

\(\Rightarrow A=\frac{0+2009-2010}{0-2009+2010}=-1\)

24 tháng 5 2020

b) Có x+y+z=0 => \(\left\{{}\begin{matrix}x+y=-z\\y+z=-x\\x+z=-y\end{matrix}\right.\)

=> B = \(-xyz\) = -2

a) Có x + y + 1 =0 => x + y = -1

\(x^2\left(x+y\right)-y^2\left(x+y\right)+x^2-y^2+2\left(x+y\right)+3\)

= \(\left(x+y\right)\left(x^2-y^2\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y\right)+3\)

= \(\left(x+y\right)^2\left(x-y\right)+\left(x-y\right)\left(x+y\right)+2\left(x+y\right)+3\)

Thay x + y = -1, ta có:

A = x - y - x + y - 2 + 3

= 1

1 tháng 9 2020

\(\text{a)}25x^2+30x+9\)                                 \(\text{e)}4x^2-4x+1\)

\(\text{b)}16x^2-24x+9\)                              \(\text{f)}9x^2-12x+4\)

\(\text{c)}8x^3+60x^2+150x+125\)          \(\text{g)}x^3-3x^2+3x-1\)

\(\text{d)}8x^3-36x^2+54x-27\)               \(\text{h)}27x^3+27x^2+9x+1\) 

5 tháng 10 2020

a) ( 5x - y )( 25x2 + 5xy + y2 ) = ( 5x )3 - y3 = 125x3 - y3

b) ( x - 3 )( x2 + 3x + 9 ) - ( 54 + x3 ) = x3 - 33 - 54 - x3 = -27 - 54 = -81

c) ( 2x + y )( 4x2 - 2xy + y2 ) - ( 2x - y )( 4x2 + 2xy + y2 ) = ( 2x )3 + y3 - [ ( 2x )3 - y3 ]= 8x3 + y3 - 8x3 + y3 = 2y3

d) ( x + y )2 + ( x - y )2 + ( x + y )( x - y ) - 3x2 = x2 + 2xy + y2 + x2 - 2xy + y2 + x2 - y2 - 3x2 = y2

e) ( x - 3 )3 - ( x - 3 )( x2 + 3x + 9 ) + 6( x + 1 )2

= x3 - 9x2 + 27x - 27 - ( x3 - 33 ) + 6( x2 + 2x + 1 )

= x3 - 9x2 + 27x - 27 - x3 + 27 + 6x2 + 12x + 6

= -3x2 + 39x + 6

= -3( x2 - 13x - 2 )

f) ( x + y )( x2 - xy + y2 ) + ( x - y )( x2 + xy + y2 ) - 2x3

= x3 + y3 + x3 - y3 - 2x3

= 0

g) x2 + 2x( y + 1 ) + y2 + 2y + 1

= x2 + 2x( y + 1 ) + ( y2 + 2y + 1 )

= x2 + 2x( y + 1 ) + ( y + 1 )2

= ( x + y + 1 )2

= [ ( x + y ) + 1 ]2

= ( x + y )2 + 2( x + y ) + 1

= x2 + 2xy + y2 + 2x + 2y + 1

9 tháng 7 2021

cái này mik hiểu là phân tích đa thức thành nhân tử

= ((x-1)^2-(2x)^2

= (x-1-2x)(x-1+2x)

=(-x-1)(3x-1)

chúc bn học tốt

9 tháng 7 2021

hong bit