K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

góc EBC=góc DCB

=>ΔEBC=ΔDCB

b: ΔEBC=ΔDCB

=>góc HBC=góc HCB

=>HB=HC

mà AB=AC

nên AH là trung trực của BC

26 tháng 3 2022

thiếu đề r

26 tháng 3 2022

:] idk

27 tháng 3 2022

 a,Xét tam giác vuông ABD vuông tại D và tam giác ACE vuông tại E có AB=AC (GT), góc BAD chung , Góc E = Góc D =90 độ (gt) 

=> Tam giác vuông ABD =Tam giác ACE (c.h-g.n)                              =>BD=CE ( 2 cạnh tg ứng )

 

27 tháng 3 2022

b, Có góc B=góc C (tam giác ABC cân)                                         mà góc B = góc B1+góc B2                                                                   góc C =góc C1+ góc                                                                         Lại có B1=C1 ( tam giác ABD= tam giác ACE )                                Góc B= góc C                                                                     => góc B2= góc C2 => Tam giác BHC cân tại B

18 tháng 3 2022

Xét tam giácBCE= tam giác CBD (cạnh huyền -mgóc nhọn)

góc ABC = góc ACB ( cân tại A)

BC chung 

==> BD=CE

 

18 tháng 3 2022

b) Tam giác BCE=tam giác CBD chứng minh ở câu a nên 

góc BCE = góc DBC

--> IBC cân tại I

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Xét ΔECB vuông tại E và ΔDBC vuông tại D có

BC chung

EC=DB

Do đó: ΔECB=ΔDBC

SUy ra: \(\widehat{ICB}=\widehat{IBC}\)

=>ΔIBC cân tại I

Xét ΔABI và ΔACI có

AB=AC
AI chung

BI=CI

Do đó: ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

c: Vì AB=AC

và IB=IC

nên AI là đường trung trực của CB

15 tháng 6 2020

tự kẻ hình

a) xét tam giác BEC và tam giác CDB có

BC chung

BEC=CDB(=90 độ)

ABC=ACB( tam giác ABC cân A)

=> tam giác BEC= tam giác CDB(ch-gnh)

=> BD=CE( hai cạnh tương ứng)

b) từ tam giác BEC= tam giác CDB=> DBC=ECB(hai góc tương ứng)

=> tam giác HBC cân H

c) đặt O là giao điểm của AH với BC

vì AH,BD,CE cùng giao nhau tại H mà BD, CE là đường cao=> AH là đường cao ( 3 đường cao cùng đi qua một điểm)

vì HBC cân H=> HB=HC

xét tam giác HOB và tam giác HOC có

HB=HC(cmt)

HBO=HCO(cmt)

HOB=HOC(=90 độ)

=> tam giác HOB= tam giác HOC(ch-gnh)

=> BO=CO( hai cạnh tương ứng)

=> AH là trung trực của BC

d) xét tam giác CDB và tam giác CDK có

BD=DK(gt)

CDB=CDK(=90 độ)

DC chung

=> tam giác CDB= tam giác CDK(cgc)

=> CBD=CKD( hai cạnh tương ứng)

mà CBD=BCE=> CKD=BCE 

17 tháng 1 2022

hay quá

23 tháng 4 2017

A) Xét tam giác BEC và tam giác CDB có :

            \(\widehat{BEC}\)=\(\widehat{CDB}\)=\(90^0\)

          \(BC\)chung

          \(\widehat{EBC}\)=\(\widehat{DCB}\)( giả thiết )

       \(\Rightarrow\Delta EBC=\Delta DCB\left(G-C-G\right)\)

       Vậy \(BD=CE\)   ( hai canh tương ứng )

B) Xét tam giác DHC và tam giác EHC có :

         \(\widehat{EBH}\)  =\(\widehat{DCH}\)( vì góc CDH=góc BEB ; góc EHB = góc DHC )

          EB=DC ( theo phần a )

         \(\widehat{HEB}\)=\(\widehat{CDH}\)=900

            \(\Rightarrow\)\(\Delta EHB=\Delta DHC\left(G-C-G\right)\)

       \(\Rightarrow BB=HC\)( HAI CẠNH TƯƠNG ỨNG )

\(\Rightarrow\Delta BHC\)cân ( định lí tam giác cân )

         C) Ta có : AB =AC ( giả thiêt )

     Vậy góc A cách đều hai mút B và C 

       Vậy AH là đường trung trực của BC

   d)Xét tam giác BDC và tam giác KDC có : 

 DK=DB ( GT )

     CD ( chung )

     suy ra tam giác BDC =tam giác KDC ( cạnh huyền - cạnh góc vuông )

    \(\Rightarrow\) \(\widehat{BCD}\)=\(\widehat{KCD}\)( HAI GÓC TƯƠNG ỨNG ) 

   Mà ta lai có góc EBC = góc BCD  theo giả thiết )

         \(\Rightarrow\)\(\widehat{EBC}\)=\(\widehat{EBC}\)

  chúc bạn hok giỏi 

17 tháng 6 2022

ủa bạn hình như câu d 2 Tgiac=nhau theo TH 2cgv mà bạn

 

5 tháng 5 2019

a) xét 2 tam giác vuông ABD và ACE có:

              AB=AC(gt)

             \(\widehat{A}\)chung

=> tam giác ABD=tam giác ACE(CH-GN)

b)vì tam giác ABD=tam giác ACE(câu a) => AD=AE

=> tam giác AED cân tại A

c) ta thấy H là trực tâm của tam giác cân ABC

=> \(\widehat{BAH}\)=\(\widehat{CAH}\)

gọi O là giao điểm của AH và ED

xét tam giác AOE và tam giác AOD có:

          AE=AD(tam giác AED cân)

          \(\widehat{EAO}\)=\(\widehat{DAO}\)(cmt)

         AO chung

=> tam giác AOE=tam giác AOD(c.g.c)

=> OE=OD=> O là trung điểm của ED(1)

\(\widehat{AOE=\widehat{AOD}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOE=\widehat{AOD}}\)=90 độ => AO\(\perp\)ED(2)

từ (1) và (2) => AH là trung trực của ED

A B C D E H O

5 tháng 5 2019

a) Xét tam giác ABD và tg ACE có:

                D^ = E^ = 90độ (gt)

                A là góc chung

                AB = AC ( do tam giác ABC cân tại A)

    => tam giác ABD = tam giác ACE (ch-gn)

b) Vì AD = AE ( tg ABD = tg ACE)

        => tg AED cân tại A.

c) Vì AD = AE (cmt)

       => A thuộc đường trung trực của ED.

    Xét tg AEH và tg ADH có:

            E^ = D^ = 90độ (gt) 

            AD = AE (cmt)

            AH cạnh huyền chung.

       => tg AEH = tg ADH (ch-cgv)

       => HE = HD.

       => H thuộc đường trung trực của ED.

       => AH là đường trung trực của  ED.

25 tháng 4 2019

Tự vẽ hình

Xét tam giác BDC và tam giác CEB có :

\(\widehat{B}=\widehat{C}\)( t/c của tia phân giác )

BC cạnh chung

\(\widehat{E}=\widehat{D}=90^o\)( theo hình vẽ )

=> tam giác BDC = tam giác CEB ( g.c.g )

=> BD = CE ( 2 cạnh tương ứng )

b) Xét tam giác BEI và tam giác CDI có :

\(\widehat{I_1}=\widehat{I_3}\)( 2 góc đối đỉnh )

BD = CE ( cmt)

\(\widehat{E}=\widehat{D}=90^o\)( theo hình vẽ )

=> tam giác BEI và tam giác CDI  ( g.c.g )

=> BI = IC ( 2 cạnh tương ứng )

=> tam giác BIC cân ở I ( đpcm )

25 tháng 4 2019

Xét \(\Delta BDC\) và \(\Delta CEB\) có :

\(\widehat{B}=\widehat{C}\)(tính chất của tia phân giác)

BC chung

\(\widehat{E}=\widehat{D}=90^o\)

\(\Rightarrow\Delta BDC=\Delta CEB\left(g-c-g\right)\)

=> BD = CE ( 2 cạnh tương ứng )

b.  Xét \(\Delta BEI\) và \(\Delta CDI\) có :

\(\widehat{I_1}=\widehat{I_3}\)(2 góc đối đỉnh)

BD = CE(câu a)

\(\widehat{E}=\widehat{D}=90^o\)

=> \(\Delta BEI=\Delta CDI\left(g.c.g\right)\)  

=> BI = IC ( 2 cạnh tương ứng )

=> tam giác BIC cân ở I ( đpcm )