Tìm số tự nhiên n biết :
a) 2^n = 8
b) 5^n+1 = 125
c) 3.2^n-2
d) 2.7^n-1 +3 = 101
e) 3.5^2n+1 -6^2 = 339
Nhanh ạ em đang cần gấp ạ !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình mẫu đầu với cuối nhé:
a) Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)
\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)
\(\Rightarrow3⋮d\)
\(\Rightarrow d\in\left\{1,3\right\}\)
Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)
Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.
e) \(ƯCLN\left(2n+3,3n+5\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)
\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)
\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)
Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.
a, \(\dfrac{15}{n-1}\); n∈Z
\(\dfrac{15\left(n-1\right)}{n-1}=\dfrac{15n-15}{n-1}\)
=> Ư(15)={\(\pm1;\pm3;\pm5;\pm15\)}
n-1 | -15 | -5 | -3 | -1 | 1 | 3 | 5 | 15 |
n | -14 | -4 | -2 | 0 | 2 | 4 | 6 | 16 |
Đánh giá | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn |
Vậy n∈{-14;-4;-2;0;2;4;6;16}
b, \(\dfrac{-21}{n+3}\) n∈Z
\(\dfrac{-21\left(n+3\right)}{n+3}=\dfrac{\left(-21n-63\right)}{n+3}\)
Ư(63)={±1;±3;±7;±9;±21;±63}
n+3 | -63 | -21 | -9 | -7 | -3 | -1 | 1 | 3 | 7 | 9 | 21 | 63 |
n | -66 | -24 | -12 | -10 | -6 | -4 | -2 | 0 | 4 | 6 | 18 | 60 |
Đ/gia | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn |
Vậy n∈{-66;-24;-12;-10;-6;-4;-2;0;4;6;18;60}
\(\dfrac{2n+7}{n-2};n\inℤ\\ \Rightarrow\dfrac{\left(2n-4\right)+7+2}{n-2}=\dfrac{2\left(n-2\right)+9}{n-2}=2+\dfrac{9}{n-2}\)
\(\LeftrightarrowƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
Ta có bảng sau:
n-2 | -9 | -3 | -1 | 1 | 3 | 9 |
n | -7 | -1 | 1 | 3 | 5 | 11 |
Đ/gia | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn | t/mãn |
Vậy n={-7;-1;1;3;5;11}
\(b,\frac{7}{n-1}\)
\(\Rightarrow n-1\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
Ta lập bảng
n-1 | 1 | -1 | 7 | -7 |
n | 2 | 0 | 8 | -6 |
\(c,\frac{n+1}{n-1}=\frac{n-1+2}{n-1}=\frac{2}{n-1}\)
\(\Rightarrow n-1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta lập bảng
n-1 | 1 | -1 | 2 | -2 |
n | 2 | 0 | 3 | -1 |
a)\(9^3.3^n=3^{12}\Rightarrow\left(3^2\right)^3.3^n=3^{12}\Rightarrow3^6.3^n=3^{12}\Rightarrow3^n=3^{12}:3^6=3^2\)\(\Rightarrow n=2\)
b)\(\left(2n+4\right)^2-5.7=4^2-15\)
\(\left(2n+2^2\right)^2-35=2^4-15\)
\(2n^2+2^4=2^4-15+35\)
\(2n^2+2^4=2^4+20\)
\(2n^2=20\)
mà 20 k fai số chính phương nên k tìm đc n
c)\(\left(n-2\right)^5=243\Rightarrow\left(n-2\right)^5=3^5\Rightarrow n-2=3\Rightarrow n=5\)
d)\(\left(n+1\right)^3=125\Rightarrow\left(n-1\right)^3=5^3\Rightarrow n-1=5\Rightarrow n=6\)
e)\(6.2^n+3.2^n=9.2^2\)
\(2^n\left(3+6\right)=9.2^2\)
\(2^n.9=9.2^2\Rightarrow2^n=2^2\Rightarrow n=2\)
Mk thấy mấy bài này cx đâu có khó j đâu, bn chỉ cần vận dụng công thức là đc thôi mà
****nha
a) \(2^n=8\)
\(\Rightarrow2^n=2^3\)
\(\Rightarrow n=3\)
b) \(5^{n+1}=125\)
\(\Rightarrow5^{n+1}=5^3\)
\(\Rightarrow n+1=3\)
\(\Rightarrow n=3-1=2\)
c) Mình không rõ đề:
d) \(2\cdot7^{n-1}+3=101\)
\(\Rightarrow2\cdot7^{n-1}=101-3\)
\(\Rightarrow2\cdot7^{n-1}=98\)
\(\Rightarrow7^{n-1}=\dfrac{98}{2}\)
\(\Rightarrow7^{n-1}=49\)
\(\Rightarrow7^{n-1}=7^2\)
\(\Rightarrow n-1=2\)
\(\Rightarrow n=1+2=3\)
e) \(3\cdot5^{2n+1}-6^2=339\)
\(\Rightarrow3\cdot5^{2n+1}=339+36\)
\(\Rightarrow3\cdot5^{2n+1}=375\)
\(\Rightarrow5^{2n+1}=125\)
\(\Rightarrow5^{2n+1}=5^3\)
\(\Rightarrow2n+1=3\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=\dfrac{2}{2}=1\)