làm câu b ạa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(B=\dfrac{6n+1}{12n}\)
\(B=\dfrac{6n}{12n}+\dfrac{1}{12n}\)
\(B=\dfrac{1}{2}+\dfrac{1}{12n}\)
Vì: \(12n=2^2\cdot3\cdot n\)
Nên: \(\dfrac{1}{12n}\) được viết dưới dạng số thập phân vô hạn tuần hoàn
\(\Rightarrow\dfrac{1}{2}+\dfrac{1}{12n}\) được viết dưới dạng số thập phân vô hạn tuần hoàn
\(\Rightarrow\dfrac{6n+1}{12n}\) được viết dưới dạng số thập phân vô hạn tuần hoàn
b: \(B=\dfrac{6n+1}{12n}=\dfrac{1}{2}+\dfrac{1}{12n}\)
Vì 12=2^2*3
nên 1/12n viết dưới dạng số thập phân vô hạn tuần hoàn
=>B=(6n+1)/12n viết dưới dạng số thập phân vô hạn tuần hoàn
6: \(u_1=5\cdot2^{1+2}=5\cdot2^3=5\cdot8=40\)
\(u_2=5\cdot2^{2+2}=5\cdot2^4=80\)
=>q=u2/u1=2
1: Thay x=16 vào A, ta được:
\(A=\dfrac{4-1}{4+3}=\dfrac{3}{7}\)
2: \(P=A:B\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}+3}:\dfrac{x-3\sqrt{x}-x-6\sqrt{x}-9+x+11\sqrt{x}+6}{x-9}\)
\(=\dfrac{\sqrt{x}-1}{1}\cdot\dfrac{\sqrt{x}-3}{x+2\sqrt{x}-3}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
b: kẻ đường kính AD
góc ACD=90 độ=góc ABD
=>AC vuông góc CD và AB vuông góc BD
=>BH//CD và CH//BD
=>BDCH là hbh
=>H,N,D thẳng hàng và N là trung điểm của HD
=>NT là đường trung bình của ΔAHD
=>NT//AD và NT=1/2AD=OA
=>NT//OA
=>ATNO là hbh
EN=1/2BC
=>EN=BN
=>ΔNEB cân tại N
=>góc NBE=góc NEB
EJ=1/2AH=JH
=>ΔJEH cân tại J
=>góc JEH=góc JHE
góc NBE+Góc ACB=90 độ
góc HAC+góc ACB=90 độ
=>góc NBE=góc HAC
mà góc JHE+góc HAC=90 độ
nên góc JHE+góc NBE=90 độ
=>góc JEN=90 độ
Câu 18: B
Câu 19: B
Câu 20: D
Câu 21; D
Câu 22: B
Câu 23: B
Câu 24: A
b: góc BOC=góc AOM=40 độ
=>góc NOB=góc BOC