tìm y biết :
y ( 2y-3 ) (2y -1 ) ( y+1 ) =24
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x}{4}=\dfrac{2y+1}{3}=\dfrac{x-2y-1}{y}=\dfrac{x-2y-1-x+2y+1}{4-3-y}=\dfrac{0}{1-y}=0\\ \Rightarrow\left\{{}\begin{matrix}x=0\\2y+1=0\\x-2y-1=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Áp dụng t/c dtsbn ta có:
\(\dfrac{x}{4}=\dfrac{2y+1}{3}=\dfrac{x-2y-1}{y}=\dfrac{x-2y-1}{4-3}=\dfrac{x-2y-1}{1}=x-2y-1\)
\(\dfrac{x-2y-1}{y}=x-2y-1\Rightarrow x-2y-1=y\left(x-2y-1\right)\Rightarrow\left(y-1\right)\left(x-2y-1\right)=0\Rightarrow\left[{}\begin{matrix}y=1\\x-2y-1=0\end{matrix}\right.\)
Với y=1:\(\dfrac{x}{4}=\dfrac{2y+1}{3}=\dfrac{2.1+1}{3}=1\Rightarrow x=4\)
Với \(x-2y-1=0\)\(\Rightarrow\dfrac{x}{4}=\dfrac{2y+1}{3}=0\Rightarrow\left\{{}\begin{matrix}x=0\\y=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy \(\left(x,y\right)\in\left\{\left(4;1\right);\left(0;-\dfrac{1}{2}\right)\right\}\)
A ) ĐK: x#0
Ta có:
(1) 1+2y/18 = 1+4y/24
=> 24 + 48y = 18 + 72y
<=> y=1/4
(2) 1+4y/24=1+6y/6x
Thay y=1/4 vào (2) ta tìm đc x=5 (thỏa)
B ) x+y=3(x−y)=x:y
→x+y=3x−3y
→4y=2x
→x:y=4:2=2
→x+y=2
Mà x=2y nên
2y+y=3y=2
→y=2/3
→x=2−2/3=4/3
Chú ý : dấu / nghĩa là phần
Nếu mình đúng thì các bạn k mình nhé
a) \(\frac{1+2y}{18}=\frac{1+4y}{24}\Rightarrow24+48y=18+72y\Rightarrow6=24y\Rightarrow y=\frac{1}{4}\)
\(\frac{1+4y}{24}=\frac{1+6y}{6x}\Rightarrow\frac{1+4.\frac{1}{4}}{24}=\frac{1+6.\frac{1}{4}}{6x}\Rightarrow\frac{2}{24}=\frac{\frac{5}{2}}{6x}\Rightarrow12x=60\Rightarrow x=5\)
b) \(x+y=3\left(x-y\right)\Rightarrow x+y=3x-3y\Rightarrow4y=2x\Rightarrow x=2y\)
\(x+y=\frac{x}{y}\Rightarrow2y+y=\frac{2y}{y}\Rightarrow3y=2\Rightarrow y=\frac{2}{3}\Rightarrow x=2y=\frac{4}{3}\)
\(\)
Ta có \(\frac{1+2y}{18}\)=\(\frac{1+4y}{24}\)
\(\Rightarrow\)(1+2y)24=(1+4y)18
\(\Rightarrow\)24+48y=18+72y
\(\Rightarrow\)24-18=72y-48y
\(\Rightarrow\)6=24y
\(\Rightarrow\)y=\(\frac{6}{24}\)
\(\Rightarrow\)y=\(\frac{1}{4}\)
Thay y=\(\frac{1}{4}\) vào đề ta có:
1 + 2\(\frac{1}{4}\) / 18 = 1 + 4\(\frac{1}{4}\) / 24 = 1 + 6\(\frac{1}{4}\) / 6x
=>\(\frac{1}{12}\)=\(\frac{\frac{5}{2}}{\frac{6}{x}}\)
=>12.\(\frac{5}{2}\)=6x
=>30=6x
=>x=5
Vậy x=5;y=\(\frac{1}{4}\)
ta co : 1+2y/18=1+4y/24
=> 24(1+2y)=18(1+4y)
=>24+48y=18+72y
=>24-18=72y-48y
=>6=24y
=>y=1/4
thay y thanh 1/4 vao de bai ta co :
1+1/2/18=1+1/24=(1+3/2)/6x
=>1/12=(5/2)/6x
=>12/(5/2)=6x
=>30=6x/x=5
vay x=5 va y=1/4
ta co : 1+2y/18=1+4y/24
=> 24(1+2y)=18(1+4y)
=>24+48y=18+72y
=>24-18=72y-48y
=>6=24y
=>y=1/4
thay y thanh 1/4 vao de bai ta co :
1+1/2/18=1+1/24=(1+3/2)/6x
=>1/12=(5/2)/6x
=>12/(5/2)=6x
=>30=6x/x=5
vay x=5 va y=1/4
ta co : 1+2y/18=1+4y/24
=> 24(1+2y)=18(1+4y)
=>24+48y=18+72y
=>24-18=72y-48y
=>6=24y
=>y=1/4
thay y thanh 1/4 vao de bai ta co :
1+1/2/18=1+1/24=(1+3/2)/6x
=>1/12=(5/2)/6x
=>12/(5/2)=6x
=>30=6x/x=5
vay x=5 va y=1/4
ta co : 1+2y/18=1+4y/24
=> 24(1+2y)=18(1+4y)
=>24+48y=18+72y
=>24-18=72y-48y
=>6=24y
=>y=1/4
thay y thanh 1/4 vao de bai ta co :
1+1/2/18=1+1/24=(1+3/2)/6x
=>1/12=(5/2)/6x
=>12/(5/2)=6x
=>30=6x/x=5
vay x=5 va y=1/4
\(\dfrac{1+2y}{18}=\dfrac{1+4y}{24}=\dfrac{1+6y}{6x}\)(ĐK: \(x\ne0\))
\(\dfrac{1+2y}{18}=\dfrac{1+4y}{24}\)
\(\Rightarrow\left(1+2y\right)24=\left(1+4y\right)18\)
\(\Rightarrow24+48y=18+72y\)
\(\Rightarrow72y-48y=24-18\)
\(\Rightarrow24y=6\)
\(\Rightarrow y=\dfrac{1}{4}\) \(\left(1\right)\)
Ta có: \(\dfrac{1+4y}{24}=\dfrac{1+6y}{6x}\) \(\left(2\right)\)
Thay \(\left(1\right)\) vào \(\left(2\right)\), ta có:
\(\dfrac{1+4\cdot\dfrac{1}{4}}{24}=\dfrac{1+6\cdot\dfrac{1}{4}}{6x}\)
\(\Rightarrow\dfrac{2}{24}=\dfrac{\dfrac{5}{2}}{6x}\)
\(\Rightarrow6x=\dfrac{\dfrac{5}{2}\cdot24}{2}\)
\(\Rightarrow6x=30\)
\(\Rightarrow x=5\)(thỏa mãn)
Vậy x = 5 và y = \(\dfrac{1}{4}\)
#YM
\(y\left(2y-3\right)\left(2y-1\right)\left(y+1\right)=24\)
\(\Leftrightarrow\left[y\left(2y-1\right)\right]\left[\left(2y-3\right)\left(y+1\right)\right]=24\)
\(\Leftrightarrow\left(2y^2-y\right)\left(2y^2-y-3\right)=24\)
\(\Leftrightarrow t\left(t-3\right)=24\) (với \(t=2y^2-y\)), suy ra \(t\ge-\dfrac{1}{8}\)
\(\Leftrightarrow t^2-3t-24=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=\dfrac{3+\sqrt{105}}{2}\left(nhận\right)\\t=\dfrac{3-\sqrt{105}}{2}\left(loại\right)\end{matrix}\right.\)
Suy ra \(2y^2-y=\dfrac{3+\sqrt{105}}{2}\)
Tới đây thì mình nghĩ bạn tìm đc y rồi đó.