K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(GT\Rightarrow\left(\sqrt{2+x^2}-x\right)\left(\sqrt{2+x^2}+x\right)\left(\sqrt{2+y^2}+y\right)=2\left(\sqrt{2+x^2}+x\right)\)

\(\Leftrightarrow2\left(\sqrt{2+y^2}+y\right)=2\left(\sqrt{2+x^2}+x\right)\)

\(\Leftrightarrow\sqrt{2+x^2}+x-\sqrt{2+y^2}-y=0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)\left(x+y\right)}{\sqrt{2+x^2}+\sqrt{2+y^2}}+\left(x-y\right)=0\)

TH1:\(x-y=0\Leftrightarrow x=y\left(đpcm\right)\)

TH2: \(x+y+\sqrt{2+x^2}+\sqrt{2+y^2}=0\)

Ta có: \(x\ge-\sqrt{x^2}\)\(y\ge-\sqrt{y^2}\)

\(\Rightarrow x+y+\sqrt{2+x^2}+\sqrt{2+y^2}\ge\sqrt{2+x^2}-\sqrt{x^2}+\sqrt{2+y^2}-\sqrt{y^2}>0\)

Do vậy TH2 không có x,y tm

Vậy ta có đpcm

 

NV
8 tháng 2 2021

\(\left(x;y;z\right)=\left(\dfrac{1}{a};\dfrac{1}{b};\dfrac{1}{c}\right)\Rightarrow ab+bc+ca=2020\)

BĐT trở thành:

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020.2021}{abc}\)

\(\Leftrightarrow\dfrac{ab+bc+ca}{abc}+a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020.2021}{abc}\)

\(\Leftrightarrow a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le\dfrac{2020^2}{abc}\)

Ta có: \(\sqrt{2020+a^2}=\sqrt{ab+bc+ca+a^2}=\sqrt{\left(a+b\right)\left(a+c\right)}\le\dfrac{1}{2}\left(2a+b+c\right)\)

Tương tự:...

\(\Rightarrow\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le2\left(a+b+c\right)\)

\(\Rightarrow a+b+c+\sqrt{2020+a^2}+\sqrt{2020+b^2}+\sqrt{2020+c^2}\le3\left(a+b+c\right)\)

Nên ta chỉ cần chứng minh:

\(3\left(a+b+c\right)\le\dfrac{2020^2}{abc}=\dfrac{\left(ab+bc+ca\right)^2}{abc}\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge3abc\left(a+b+c\right)\) (hiển nhiên đúng)

Dấu "=" xảy ra khi \(a=b=c\) hay \(x=y=z\)

3 tháng 8 2016

Áp dụng bđt \(\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)

Dấu bằng xảy ra khi \(ad=bc\)

\(x\sqrt{1-y^2}+\sqrt{1-x^2}.y\le\left|x\sqrt{1-y^2}+\sqrt{1-x^2}.y\right|\le\sqrt{x^2+1-x^2}.\sqrt{1-y^2+y^2}=1\)

Dấu bằng xảy ra khi \(xy=\sqrt{1-x^2}.\sqrt{1-y^2}\Leftrightarrow x^2y^2=x^2y^2+1-\left(x^2+y^2\right)\)

\(\Leftrightarrow x^2+y^2=1\)

29 tháng 10 2018

biết làm rồi

30 tháng 10 2018

VẬy bạn giải ra cho mọi người xem được ko?

Lớn hơn hoặc bằng kí hiệu trong Latex là \geq nha!