Giai pt sau : \(4\left(x^2+1\right)^2-\left(x^2-5x-2\right)^2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
1.
PT $\Leftrightarrow (x^2+5x)^2+2(x^2+5x)-24=0$
$\Leftrightarrow t^2+2t-24=0$ (đặt $x^2+5x=t$)
$\Leftrightarrow (t-4)(t+6)=0$
$\Rightarrow t-4=0$ hoặc $t+6=0$
Nếu $t-4=0\Leftrightarrow x^2+5x-4=0$
$\Leftrightarrow x=\frac{-5\pm \sqrt{41}}{2}$
Nếu $t+6=0$
$\Leftrightarrow x^2+5x+6=0$
$\Leftrightarrow (x+2)(x+3)=0\Rightarrow x=-2$ hoặc $x=-3$
2.
PT $\Leftrightarrow (x^2-4x+1)^2+2(x^2-4x+1)-3=0$
$\Leftrightarrow t^2+2t-3=0$ (đặt $x^2-4x+1=t$)
$\Leftrightarrow (t-1)(t+3)=0$
$\Rightarrow t-1=0$ hoặc $t+3=0$
Nếu $t-1=0\Leftrightarrow x^2-4x=0\Leftrightarrow x(x-4)=0$
$\Rightarrow x=0$ hoặc $x=4$
Nếu $t+3=0\Leftrightarrow x^2-4x+4=0$
$\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$
a: =>(x^2+4x-5)(x^2+4x-21)=297
=>(x^2+4x)^2-26(x^2+4x)+105-297=0
=>x^2+4x=32 hoặc x^2+4x=-6(loại)
=>x^2+4x-32=0
=>(x+8)(x-4)=0
=>x=4 hoặc x=-8
b: =>(x^2-x-3)(x^2+x-4)=0
hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)
c: =>(x-1)(x+2)(x^2-6x-2)=0
hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)
Nếu chỉ cần biện luận số nghiệm thì:
Đặt \(x^2=t\ge0\) \(\Rightarrow\left(2-\sqrt{5}\right)t^2+5t+7\left(1+\sqrt{2}\right)=0\) (1)
Ta có \(ac=\left(2-\sqrt{5}\right).7\left(1+\sqrt{2}\right)< 0\) nên (1) có 2 nghiệm trái dấu hay có đúng 1 nghiệm dương
\(\Rightarrow\) Pt đã cho có 2 nghiệm pb
<=>\(\left(2x^2+2\right)^2-\left(x^2-5x-2\right)^2=0\)
<=>\(\left(2x^2+2-x^2+5x+2\right)\left(2x^2+2+x^2-5x-2\right)=0\)
<=>\(\left(x^2+5x+4\right)\left(3x^2-5x\right)=0\)
<=>\(\left(x+1\right)\left(x+4\right)x\left(3x-5\right)=0\)
<=>x+1=0 hoặc x+4=0 hoặc x=0 hoặc 3x-5=0
<=>x=-1 hoặc x=-4 hoặc x=0 hoặc x=5/3
bài này dùng hằng đẳng thức a2-b2= (a-b)(a+b)
\(\left(2x^2+2-x^2+5x+2\right)\left(2x^2+2+x^2-5x-2\right)=0\)
\(\left(x^2+5x+4\right)\left(3x^2-5x\right)=0\)