K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 5 2017

<=>\(\left(2x^2+2\right)^2-\left(x^2-5x-2\right)^2=0\)

<=>\(\left(2x^2+2-x^2+5x+2\right)\left(2x^2+2+x^2-5x-2\right)=0\)

<=>\(\left(x^2+5x+4\right)\left(3x^2-5x\right)=0\)

<=>\(\left(x+1\right)\left(x+4\right)x\left(3x-5\right)=0\)

<=>x+1=0 hoặc x+4=0 hoặc x=0 hoặc 3x-5=0

<=>x=-1 hoặc x=-4 hoặc x=0 hoặc x=5/3

27 tháng 5 2017

bài này dùng hằng đẳng thức a2-b2= (a-b)(a+b)

\(\left(2x^2+2-x^2+5x+2\right)\left(2x^2+2+x^2-5x-2\right)=0\)

\(\left(x^2+5x+4\right)\left(3x^2-5x\right)=0\)

  • \(x^2+5x+4=0\)<=> \(\orbr{\begin{cases}x=-1\\x=-4\end{cases}}\)
  • \(3x^2-5x=o\)<=> \(\orbr{\begin{cases}x=0\\x=\frac{5}{3}\end{cases}}\) việc còn lại bạn tự làm nhé kết luận nghiệm
AH
Akai Haruma
Giáo viên
28 tháng 11 2021

Lời giải:

1. 

PT $\Leftrightarrow (x^2+5x)^2+2(x^2+5x)-24=0$

$\Leftrightarrow t^2+2t-24=0$ (đặt $x^2+5x=t$)

$\Leftrightarrow (t-4)(t+6)=0$

$\Rightarrow t-4=0$ hoặc $t+6=0$

Nếu $t-4=0\Leftrightarrow x^2+5x-4=0$

$\Leftrightarrow x=\frac{-5\pm \sqrt{41}}{2}$

Nếu $t+6=0$

$\Leftrightarrow x^2+5x+6=0$

$\Leftrightarrow (x+2)(x+3)=0\Rightarrow x=-2$ hoặc $x=-3$

2.

PT $\Leftrightarrow (x^2-4x+1)^2+2(x^2-4x+1)-3=0$

$\Leftrightarrow t^2+2t-3=0$ (đặt $x^2-4x+1=t$)

$\Leftrightarrow (t-1)(t+3)=0$

$\Rightarrow t-1=0$ hoặc $t+3=0$

Nếu $t-1=0\Leftrightarrow x^2-4x=0\Leftrightarrow x(x-4)=0$

$\Rightarrow x=0$ hoặc $x=4$

Nếu $t+3=0\Leftrightarrow x^2-4x+4=0$

$\Leftrightarrow (x-2)^2=0\Leftrightarrow x=2$

23 tháng 11 2022

a: =>(x^2+4x-5)(x^2+4x-21)=297

=>(x^2+4x)^2-26(x^2+4x)+105-297=0

=>x^2+4x=32 hoặc x^2+4x=-6(loại)

=>x^2+4x-32=0

=>(x+8)(x-4)=0

=>x=4 hoặc x=-8

b: =>(x^2-x-3)(x^2+x-4)=0

hay \(x\in\left\{\dfrac{1+\sqrt{13}}{2};\dfrac{1-\sqrt{13}}{2};\dfrac{-1+\sqrt{17}}{2};\dfrac{-1-\sqrt{17}}{2}\right\}\)

c: =>(x-1)(x+2)(x^2-6x-2)=0

hay \(x\in\left\{1;-2;3+\sqrt{11};3-\sqrt{11}\right\}\)

1 tháng 11 2019

nhiều thế giải ko đổi đâu bạn

1 tháng 11 2019

vậy trả lời câu a thôi

19 tháng 3 2019
https://i.imgur.com/M7sPNgY.jpg
19 tháng 3 2019
https://i.imgur.com/KdjbxBN.jpg
NV
25 tháng 12 2020

Nếu chỉ cần biện luận số nghiệm thì: 

Đặt \(x^2=t\ge0\) \(\Rightarrow\left(2-\sqrt{5}\right)t^2+5t+7\left(1+\sqrt{2}\right)=0\) (1)

Ta có \(ac=\left(2-\sqrt{5}\right).7\left(1+\sqrt{2}\right)< 0\) nên (1) có 2 nghiệm trái dấu hay có đúng 1 nghiệm dương

\(\Rightarrow\) Pt đã cho có 2 nghiệm pb