K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 5 2017

Ta có: \(A=\frac{2017^{99}+1}{2017^{100}+1}\Rightarrow2017A=\frac{2017^{100}+2017}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(B=\frac{2017^{100}+1}{2017^{101}+1}\Rightarrow2017B=\frac{2017^{101}+2017}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

\(\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)

\(\Rightarrow2017A>2017B\Rightarrow A>B\)

Vậy...

26 tháng 5 2017

Đặt \(A=\frac{2017^{99}+1}{2017^{100}+1}\)nên \(2017A=\frac{2017^{100}+2017}{2017^{100}+1}=\frac{2017^{100}+1+2016}{2017^{100}+1}=1+\frac{2016}{2017^{100}+1}\)

\(B=\frac{2017^{100}+1}{2017^{101}+1}\)nên \(2017B=\frac{2017^{101}+2017}{2017^{101}+1}=\frac{2017^{101}+1+2016}{2017^{101}+1}=1+\frac{2016}{2017^{101}+1}\)

Vì \(1=1;\frac{2016}{2017^{100}+1}>\frac{2016}{2017^{101}+1}\Rightarrow1+\frac{2016}{2017^{100}+1}>1+\frac{2016}{2017^{101}+1}\)

Hay \(2017A>2017B\)nên \(A>B\)

Vây \(\frac{2017^{99}+1}{2017^{1001}+1}>\frac{2017^{100}+1}{2017^{101}+1}\)

13 tháng 6 2017

vì 2017100 + 1 < 2017101 + 1

\(\Rightarrow\frac{2017^{100}+1}{2017^{101}+1}< \frac{2017^{100}+1+2016}{2017^{101}+1+2016}=\frac{2017^{100}+2017}{2017^{101}+2017}=\frac{2017.\left(2017^{99+1}\right)}{2017.\left(2017^{100}+1\right)}=\frac{2017^{99}+1}{2017^{100}+1}\)

Vậy \(\frac{2017^{99}+1}{2017^{100}+1}>\frac{2017^{100}+1}{2017^{101}+1}\)

13 tháng 6 2017

so sánh 2 phân số cùng mẫu thì ta xét tử

đừng nói không làm được chứ

2 tháng 6 2017

\(A=\frac{2017^{99}}{2017^{100}-2}\) 

=> \(2017A=\frac{2017^{100}}{2017^{100}-2}=\frac{2017^{100}-2+2}{2017^{100}-2}=1+\frac{2}{2017^{100}-2}\)

\(B=\frac{2017^{100}}{2017^{101}-2}\)

=>\(2017B=\frac{2017^{101}}{2017^{101}-2}=\frac{2017^{101}-2+2}{2017^{101}-2}=1+\frac{2}{2017^{101}-2}\)

Do \(\frac{2}{2017^{100}-2}>\frac{2}{2017^{101}-2}\)

Nên 2017A > 2017B

Vậy A > B

6 tháng 9 2017

 ta có :

\(25^{1008}=\left(5^2\right)^{1008}=5^{2.1008}=5^{2016}\)

mà \(5^{2017}>5^{2016}\)

\(\Rightarrow\)\(5^{2017}>\left(5^2\right)^{1008}\)

\(\Rightarrow\)\(5^{2017}>25^{1008}\)

6 tháng 9 2017

có \(5^{2017}=\left(5^2\right)^{1008}\times5\)\(=25^{1008}\times5\)

mà \(=25^{1008}\times5\)\(25^{1008}\)

nên \(5^{2017}>25^{1008}\)

21 tháng 5 2019

Trả lời

Ko chép lại đề

<

<

<

<

<

<

21 tháng 5 2019

Trả lời :

a)\(\frac{99}{100}< 1\)và \(\frac{100}{99}>1\)nên \(\frac{99}{100}< \frac{100}{99}\)

~ Hok tốt ~

29 tháng 9 2017

2016^100+2016^99>2017^100

29 tháng 9 2017

cái phép tính 1 lớn hơn