K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

AM,AN là các tiếp tuyến

Do đó: AM=AN

=>A nằm trên đường trung trực của MN(1)

Ta có: OM=ON

=>O nằm trên đường trung trực của MN(2)

Từ (1) và (2) suy ra OA là đường trung trực của MN

=>OA\(\perp\)MN tại I

Xét ΔOHA vuông tại H và ΔOIC vuông tại I có

\(\widehat{HOA}\) chung

Do đó: ΔOHA~ΔOIC

=>\(\dfrac{OH}{OI}=\dfrac{OA}{OC}\)

=>\(OH\cdot OC=OA\cdot OI\)

mà \(OA\cdot OI=OM^2=OB^2\)

nên \(OB^2=OH\cdot OC\)

=>\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

Xét ΔOBC và ΔOHB có

\(\dfrac{OB}{OH}=\dfrac{OC}{OB}\)

\(\widehat{BOC}\) chung

Do đó: ΔOBC~ΔOHB

=>\(\widehat{OBC}=\widehat{OHB}\)

mà \(\widehat{OHB}=90^0\)

nên \(\widehat{OBC}=90^0\)

=>CB là tiếp tuyến của (O)

21 tháng 1

mà OA⋅OI=OM2=OB2

nên OB2=OH⋅OC

đoạn này không hiểu ạ , góc B đã vuông đâu

Sửa đề: M,N,P,Q cùng thuộc một đường tròn

Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>BM\(\perp\)AQ tại M

Xét (O) có

ΔBNA nội tiếp

BA là đường kính

Do đó: ΔBNA vuông tại N

=>BN\(\perp\)AP

Xét ΔABQ vuông tại B có BM là đường cao

nên \(AM\cdot AQ=AB^2\left(1\right)\)

Xét ΔABP vuông tại B có BN là đường cao

nên \(AN\cdot AP=AB^2\left(2\right)\)

Từ (1),(2) suy ra \(AM\cdot AQ=AN\cdot AP\)

=>\(\dfrac{AM}{AP}=\dfrac{AN}{AQ}\)

Xét ΔAMN và ΔAPQ có

\(\dfrac{AM}{AP}=\dfrac{AN}{AQ}\)

\(\widehat{MAN}\) chung

Do đó: ΔAMN đồng dạng với ΔAPQ

=>\(\widehat{AMN}=\widehat{APQ}\)

mà \(\widehat{AMN}+\widehat{QMN}=180^0\)(hai góc kề bù)

nên \(\widehat{QMN}+\widehat{QPN}=180^0\)

=>MNPQ là tứ giác nội tiếp

=>M,N,P,Q cùng thuộc một đường tròn

10 tháng 12 2015

kho qua ha

 

30 tháng 12 2023

Điểm C ở đâu vậy bạn?

a: ΔOAB cân tại O

mà OI là đường trung tuyến

nên OI vuông góc AB

I là trung điểm của AB

=>IA=IB=16/2=8cm

ΔOIA vuông tại I

=>OA^2=OI^2+IA^2

=>OI^2=10^2-8^2=36

=>OI=6(cm)

b: OM=OI+IM

=>6+IM=10

=>IM=4cm

ΔMIA vuông tại I

=>MI^2+IA^2=MA^2

=>\(MA=\sqrt{4^2+8^2}=4\sqrt{5}\left(cm\right)\)