K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2023

\(a,\dfrac{1}{2-\sqrt{3}}-3\sqrt{\dfrac{1}{3}}+\sqrt{12}\\ =\dfrac{2+\sqrt{3}}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}-\dfrac{\sqrt{3^2}}{\sqrt{3}}+\sqrt{2^2.3}\\ =\dfrac{2+\sqrt{3}}{4-3}-\sqrt{3}+2\sqrt{3}\\ =2+\sqrt{3}-\sqrt{3}+2\sqrt{3}\\ =2+2\sqrt{3}\)

\(b,\dfrac{2}{1+\sqrt{2}}-\sqrt{9-\sqrt{32}}\\ =\dfrac{2\left(1-\sqrt{2}\right)}{\left(1+\sqrt{2}\right)\left(1-\sqrt{2}\right)}-\sqrt{9-4\sqrt{2}}\\ =\dfrac{2-2\sqrt{2}}{1-2}-\sqrt{\left(2\sqrt{2}\right)^2-2.2\sqrt{2}+1}\\ =-2+2\sqrt{2}-\sqrt{\left(2\sqrt{2}-1\right)^2}\\ =-2+2\sqrt{2}-\left|2\sqrt{2}-1\right|\\ =-2+2\sqrt{2}-2\sqrt{2}+1\\ =-1\)

4 tháng 7 2023

sắp lên Đại tá chưa taaa?

a: \(A=\left(1-\sqrt{7}\right)\cdot\left(1+\sqrt{7}\right)=1-7=-6\)

b: \(B=3\sqrt{3}+8\sqrt{3}-15\sqrt{3}=-4\sqrt{3}\)

c: \(C=4\sqrt{2}-5\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)

24 tháng 8 2021

a)\(2\sqrt{\dfrac{16}{3}}-3\sqrt{\dfrac{1}{27}}-6\sqrt{\dfrac{4}{75}}\)

\(=2.\sqrt{\dfrac{4^2}{3}}-3.\sqrt{\dfrac{1}{3.3^2}}-6\sqrt{\dfrac{2^2}{3.5^2}}\)

\(=2.\dfrac{4}{\sqrt{3}}-3.\dfrac{1}{3\sqrt{3}}-6.\dfrac{2}{5\sqrt{3}}=\dfrac{8}{\sqrt{3}}-\dfrac{1}{\sqrt{3}}-\dfrac{12}{5\sqrt{3}}\)\(=\dfrac{23}{5\sqrt{3}}=\dfrac{23\sqrt{3}}{15}\)

b)\(\left(6\sqrt{\dfrac{8}{9}}-5\sqrt{\dfrac{32}{25}}+14\sqrt{\dfrac{18}{49}}\right).\sqrt{\dfrac{1}{2}}\)

\(=6\sqrt{\dfrac{8}{9}.\dfrac{1}{2}}-5\sqrt{\dfrac{32}{25}.\dfrac{1}{2}}+14\sqrt{\dfrac{18}{49}.\dfrac{1}{2}}\)

\(=6\sqrt{\dfrac{4}{9}}-5\sqrt{\dfrac{16}{25}}+14\sqrt{\dfrac{9}{49}}\)\(=6.\dfrac{2}{3}-5.\dfrac{4}{5}+14.\dfrac{3}{7}=6\)

c)\(\sqrt{\left(\sqrt{2}-2\right)^2}-\sqrt{6+4\sqrt{2}}=\left|\sqrt{2}-2\right|-\sqrt{4+2.2\sqrt{2}+2}=2-\sqrt{2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)

\(=2-\sqrt{2}-\left(2+\sqrt{2}\right)=-2\sqrt{2}\)

12 tháng 10 2021

a: Ta có: \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}\)

\(=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)\)

=-5+2

=-3

a: \(\dfrac{-4}{3}\cdot\sqrt{\left(-0.4\right)^2}=\dfrac{-4}{3}\cdot\dfrac{2}{5}=\dfrac{-8}{15}\)

b: \(\sqrt[3]{\dfrac{3}{4}}\cdot\sqrt[3]{\dfrac{9}{16}}=\dfrac{3}{4}\)

22 tháng 12 2023

a: \(\dfrac{3}{\sqrt{2}}+\sqrt{\dfrac{1}{2}}-2\sqrt{18}+\sqrt{\left(1-\sqrt{2}\right)^2}\)

\(=\dfrac{3}{2}\sqrt{2}+\dfrac{1}{2}\sqrt{2}-2\cdot3\sqrt{2}+\left|1-\sqrt{2}\right|\)

\(=2\sqrt{2}-6\sqrt{2}+\sqrt{2}-1=-3\sqrt{2}-1\)

b: \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{18}}+\dfrac{\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{4\sqrt{3}+2\sqrt{2}+\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{5\sqrt{3}+\sqrt{2}}{12}\)

c: \(\sqrt[3]{\dfrac{3}{4}}\cdot\sqrt[3]{\dfrac{9}{16}}=\sqrt[3]{\dfrac{3}{4}\cdot\dfrac{9}{16}}=\sqrt[3]{\dfrac{27}{64}}=\dfrac{3}{4}\)

d: \(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}=\sqrt[3]{\dfrac{54}{-2}}=-\sqrt[3]{27}=-3\)

e: \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}+7}=0\)

16 tháng 8 2023

1) 

a) \(\sqrt{2x-4}\) có nghĩa khi:

\(2x-4\ge0\)

\(\Leftrightarrow2x\ge4\)

\(\Leftrightarrow x\ge\dfrac{4}{2}\)

\(\Leftrightarrow x\ge2\)

b) \(\sqrt{\dfrac{-7}{4-x}}\) có nghĩa khi 

\(\dfrac{-7}{4-x}\ge0\) mà \(-7< 0\)

\(\Rightarrow4-x\le0\)

\(\Leftrightarrow x\ge4\)

16 tháng 8 2023

bạn ơi còn ý 2 nx mà

28 tháng 10 2023

1:

a: \(\sqrt{36}-\sqrt{100}=6-10=-4\)

b: Để \(\sqrt{\dfrac{2}{2x-1}}\) có nghĩa thì \(\dfrac{2}{2x-1}>=0\)

=>2x-1>0

=>x>1/2

2:

a: \(A=\dfrac{\left(15\sqrt{180}-5\sqrt{200}-3\sqrt{450}\right)}{\sqrt{10}}\)

\(=15\sqrt{\dfrac{180}{10}}-5\sqrt{\dfrac{200}{10}}-3\sqrt{\dfrac{450}{10}}\)

\(=15\sqrt{18}-5\sqrt{20}-3\sqrt{45}\)

\(=45\sqrt{2}-10\sqrt{5}-9\sqrt{5}\)

\(=45\sqrt{2}-19\sqrt{5}\)

b: \(B=\sqrt{32}-\sqrt{50}-16\sqrt{\dfrac{1}{8}}\)

\(=4\sqrt{2}-5\sqrt{2}-\dfrac{16}{\sqrt{8}}\)

\(=-\sqrt{2}-2\sqrt{8}=-\sqrt{2}-4\sqrt{2}=-5\sqrt{2}\)

29 tháng 11 2023

Bài 1:

a: \(\sqrt{27}+\dfrac{1}{2}\sqrt{48}-\sqrt{108}\)

\(=3\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-6\sqrt{3}\)

\(=-3\sqrt{3}+2\sqrt{3}=-\sqrt{3}\)

b: \(\left(\sqrt{14}-\sqrt{10}\right)\cdot\sqrt{6+\sqrt{35}}\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{2}\cdot\sqrt{6+\sqrt{35}}\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{12+2\sqrt{35}}\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}\)

\(=\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)=7-5=2\)

c: \(\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}-\dfrac{2}{\sqrt{3}-1}\)

\(=\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\dfrac{2\left(\sqrt{3}+1\right)}{3-1}\)

\(=\sqrt{3}-\sqrt{3}-1=-1\)

Bài 2:

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)

\(A=\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-5}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)

\(=\dfrac{x-5+\sqrt{x}-1+2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)

b: A=2

=>\(\sqrt{x}=2\left(\sqrt{x}-1\right)\)

=>\(2\sqrt{x}-2=\sqrt{x}\)

=>\(\sqrt{x}=2\)

=>x=4(nhận)

c: Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-1\)

=>\(\sqrt{x}-1+1⋮\sqrt{x}-1\)

=>\(\sqrt{x}-1\inƯ\left(1\right)\)

=>\(\sqrt{x}-1\in\left\{1;-1\right\}\)

=>\(\sqrt{x}\in\left\{2;0\right\}\)

=>\(x\in\left\{4;0\right\}\)

22 tháng 8 2023

Bài 1: 

a) \(\sqrt{1,44\cdot1,21-1,44\cdot0,4}\)

\(=\sqrt{1,44\cdot\left(1,21-0,4\right)}\)

\(=\sqrt{1,44\cdot0,81}\)

\(=\sqrt{1,44}\cdot\sqrt{0,81}\)

\(=1,2\cdot0,9\)

\(=1,08\)

b) \(\dfrac{\sqrt{5}-2}{\sqrt{5}+2}+\sqrt{80}\)

\(=\dfrac{\left(\sqrt{5}-2\right)^2}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}+4\sqrt{5}\)

\(=\dfrac{5-4\sqrt{5}+4}{1}+4\sqrt{5}\)

\(=9-4\sqrt{5}+4\sqrt{5}\)

\(=9\)

c) \(\sqrt[3]{16}+\sqrt[3]{2}\left(\sqrt[3]{4}-\sqrt[3]{2}\right)\)

\(=\sqrt[3]{2^3\cdot2}+\sqrt[3]{2\cdot4}-\sqrt[3]{2\cdot2}\)

\(=2\sqrt[3]{2}+\sqrt[3]{8}-\sqrt[3]{4}\)

\(=2\sqrt[3]{2}+2-\sqrt[3]{4}\)

22 tháng 8 2023

Bài 2: Ta có: 

\(VT=\dfrac{1}{\sqrt{a}-\sqrt{b}}:\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)}:\dfrac{\sqrt{ab}\cdot\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)
\(=\dfrac{\sqrt{a}+\sqrt{b}}{a-b}\cdot\dfrac{1}{\sqrt{a}+\sqrt{b}}\)

\(=\dfrac{\sqrt{a}+\sqrt{b}}{\left(a-b\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{1}{a-b}=VP\left(dpcm\right)\)