cho a = 3+3^2+3^3+⋯+3^1010. cmr 2a+3 là lũy thừa của 27
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3A=3^2 +.. + 3^1011
=> 2A = 3^1011 -3 => 2A +3 = 3^1011=3^(3.337)=(3^3)^337=27^337
\(A=3+3^2+3^3+...+3^{1010}\\ \Rightarrow3A=3^2+3^3+3^4+...+3^{1011}\\ \Rightarrow3A-A=3^{1011}-3\\ \Rightarrow2A+3=3^{1011}=27^{337}\left(đfcm\right)\)
\(3A=3^2+3^3+3^4+...+3^{1011}\)
\(2A=3A-A=3^{1011}-3\Rightarrow2A+3=3^{1011}=\left(3^3\right)^{337}=27^{337}\)
a. A = 4 + 22 + 23 + ... + 230
Đặt B = 22 + 23 + ... + 230
2B = 23 + 24 + ... + 231
2B - B = 231 - 22
B = 231 - 4
A = 4 + 231 - 4 = 231, là lũy thừa của 2
=> đpcm
b. A = 3 + 32 + 33 + ... + 3106
3A = 32 + 33 + 34 + ... + 3107
3A - A = 3107 - 3
2A = 3107 - 3
2A + 3 = 3107, là lũy thừa của 3
=> đpcm
Ủng hộ mk nha ^_-
\(3A=3^2+3^3+3^4+.....+3^{100}\)
\(2A=3A-A=3^2+3^3+3^4+.....+3^{100}-\left(3+3^2+3^3+.....+3^{99}\right)\)
\(2A=3^2+3^3+3^4+.....+3^{100}-3-3^2-3^3-.....-3^{99}\)
\(2A=3^{100}-3\)
Vậy \(2A+3=3^{100}-3+3=3^{100}\)là một lũy thừa của 3
a) \(A=3^1+3^2+3^3+...+3^{99}\)
\(=\left(3^1+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(=3.\left(1+3+3^2\right)+...+3^{97}.\left(1+3+3^2\right)\)
\(=13.\left(3+...+3^{97}\right)⋮13\)
Vậy A chia hết cho 13
b) \(3A=3^2+3^3+3^4+...+3^{100}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+...+3^{100}\right)-\left(3^1+3^2+3^3+...+3^{99}\right)\)
\(\Rightarrow2A=3^{100}-3\)
\(\Rightarrow2A+3=3^{100}=\left(3^{50}\right)^2\)
Vậy 2A + 3 là một lũy thừa của 3
mình biết làm rồi. xin lỗi đã làm phiền mọi người