K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`@` `\text {Ans}`

`\downarrow`

\(( x + y ) ( x^2 + 2xy + y^2 )\)

`= x(x^2 +2xy + y^2) + y(x^2 + 2xy + y^2)`

`= x^3 + 2x^2y + xy^2 + x^2y + 2xy^2 + y^3`

`= x^3 + 3x^2y + 3xy^2 + y^3`

8 tháng 10 2017

Ta có:

 VT=(x2+y2)2−(2xy)2VT=(x2+y2)2−(2xy)2

=(x2+y2−2xy)(x2+y2+2xy)=(x2+y2−2xy)(x2+y2+2xy)

=(x−y)2(x+y)2=VP=(x−y)2(x+y)2=VP

⇒đpcm⇒đpcm

8 tháng 10 2017

Bexiu bị j ấy

a.

(x^2 + y^2 - 2xy) + (x^2 + y^2 + 2xy)

= x^2 + y^2 - 2xy + x^2 + y^2 + 2xy

= (x^2 + x^2) + (y^2 + y^2) + (2xy - 2xy)

= 2x^2 + 2y^2

b.

(x^2 + y^2 - 2xy) - (x^2 + y^2 + 2xy)

= x^2 + y^2 - 2xy - x^2 - y^2 - 2xy

= (x^2 - x^2) + (y^2 - y^2) - (2xy + 2xy)

= -4xy

`x/(x+y) + (2xy)/(x^2-y^2) - y(x+y)`

`= (x(x-y))/(x^2-y^2) + (2xy)/(x^2-y^2) - (y(x-y))/(x^2-y^2)`

`= (x^2 - xy + 2xy - xy + y^2)/(x^2-y^2)`

`= (x^2+y^2)/(x^2-y^2)`

22 tháng 7 2023

\(\dfrac{x}{x+y}+\dfrac{2xy}{x^2-y^2}-\dfrac{y}{x+y}\)

\(=\dfrac{x-y}{x+y}+\dfrac{2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{\left(x-y\right)^2}{\left(x+y\right)\left(x-y\right)}+\dfrac{2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x^2-2xy+y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x^2+y^2}{x^2-y^2}\)

20 tháng 12 2016

\(=\left[\frac{2xy}{\left(x-y\right).\left(x+y\right)}+\frac{x-y}{2.\left(x+y\right)}\right]:\frac{x+y}{2x}+\frac{x}{y-x}\)

\(=\frac{4xy+\left(x-y\right).\left(x-y\right)}{2.\left(x-y\right).\left(x+y\right)}.\frac{2x}{x+y}+\frac{x}{y-x}\)

\(=\frac{x^2+2xy+y^2}{\left(x-y\right).\left(x+y\right)^2}.x+\frac{x}{y-x}\)

\(=\frac{x.\left(x+y\right)^2}{\left(x-y\right).\left(x+y\right)^2}+\frac{x}{y-x}\)

\(=\frac{x}{x-y}-\frac{x}{x-y}=0\)

Bạn giùm mik nhé, tks bạn nhiều (:

12 tháng 8 2020

sai rồi

Bài 3:

3: \(6x\left(x-y\right)-9y^2+9xy\)

\(=6x\left(x-y\right)+9xy-9y^2\)

\(=6x\left(x-y\right)+9y\left(x-y\right)\)

\(=\left(x-y\right)\left(6x+9y\right)\)

\(=3\left(2x+3y\right)\left(x-y\right)\)

Bài 4:

loading...

loading...

loading...

3 tháng 12 2018

giúp mk với nhé

sáng mai nộp rồi 

ai nhanh tay mk sẽ k cho

Ta có: \(\dfrac{y}{x-y}-\dfrac{x^3-xy^2}{x^2+y^2}\cdot\left(\dfrac{x}{x^2-2xy+y^2}-\dfrac{y}{x^2-y^2}\right)\)

\(=\dfrac{y}{x-y}-\dfrac{x\left(x^2-y^2\right)}{x^2+y^2}\cdot\left(\dfrac{x\left(x+y\right)}{\left(x-y\right)^2\cdot\left(x+y\right)}-\dfrac{y\cdot\left(x-y\right)}{\left(x-y\right)^2\cdot\left(x+y\right)}\right)\)

\(=\dfrac{y}{x-y}-\dfrac{x\left(x-y\right)\left(x+y\right)}{x^2+y^2}\cdot\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)^2\left(x+y\right)}\)

\(=\dfrac{y}{x-y}-\dfrac{x\cdot\left(x^2+y^2\right)}{\left(x^2+y^2\right)\cdot\left(x-y\right)}\)

\(=\dfrac{y}{x-y}-\dfrac{x}{x-y}\)

\(=\dfrac{y-x}{x-y}=\dfrac{-\left(x-y\right)}{x-y}=-1\)