a) (1/2-x/3)2=36/49
b) (3-2/3x)3=-1/64
giúp mình với ạ mình đang cần gắp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề trước đó:
(x-7)(x+1)-(x-3)^2=(3x-5)(3x+5)-(3x+1)^2+(x-2)^2-x
<=>x^2+x-7x-7-x^2+6x-9=9x^2-25-9x^2-6x-1+x^2-4x+4-x
<=>x^2-11x-6=0
<=>x^2-2x. 11/2 + 121/4-145/4=0
<=>(x-11/2)^2=145/4
<=>|x-11/2|=căn(145)/2
<=>x=[11+-căn(145)]/2
\(A=2x^3+6x^2-3x+\dfrac{1}{2}=2\cdot\dfrac{1}{3}^3+6\cdot\dfrac{1}{3}^2-3\cdot\dfrac{1}{3}+\dfrac{1}{2}\)
=13/54
A. ( x + 5 )3 = - 27 B. ( 2x - 3 )3 = -64 C. ( 3x - 4 )2 = 36
( x + 5 )3 = ( - 3 )3 ( 2x - 3 )3 = ( -4 )3 ( 3x - 4 )2 = 62
=> x + 5 = -3 => 2x - 3 = -4 => 3x - 4 = 6
x = -3 - 5 2x = - 4 + 3 3x = 6 + 4
x = -8 2x = -1 3x = 10
Vậy x = -8 x = -1 : 2 x = 10 : 3
x = -1/2 x = 10/3
Vậy x = -1/2 Vậy x = 10/3
~ Mk cũng ko chắc lắm, nếu đúng thì tk ~
\(\left(x+5\right)^3=-27\)
\(\Leftrightarrow\left(x+5\right)^3=-3^3\)
\(\Leftrightarrow x+5=-3\)
\(\Leftrightarrow x=\left(-3\right)-5\)
\(\Leftrightarrow x=-8\)
Roy câu sau tương tự.
a) \(3\left(x-5\right)+6=36\)
\(\Rightarrow3\cdot\left(x-5\right)=36-6\)
\(\Rightarrow3\cdot\left(x-5\right)=30\)
\(\Rightarrow x-5=10\)
\(\Rightarrow x=10+5\)
\(\Rightarrow x=15\)
b) \(200-8\cdot\left(x+7\right)=24\)
\(\Rightarrow8\cdot\left(x+7\right)=200-24\)
\(\Rightarrow8\cdot\left(x+7\right)=176\)
\(\Rightarrow x+7=\dfrac{176}{8}\)
\(\Rightarrow x+7=22\)
\(\Rightarrow x=22-7\)
\(\Rightarrow x=15\)
c) \(\left(x-890\right)\left(74-x\right)=0\)
+) \(x-890=0\)
\(\Rightarrow x=890\)
+) \(74-x=0\)
\(\Rightarrow x=74\)
d) \(\left(31-x\right)\cdot\left(x-64\right)=0\)
+) \(31-x=0\)
\(\Rightarrow x=31\)
+) \(x-64=0\)
\(\Rightarrow x=64\)
\(5-\left|3x-1\right|=3\)
\(\left|3x-1\right|=2\)
\(\Rightarrow\orbr{\begin{cases}3x-1=2\\3x-1=-2\end{cases}}\Rightarrow\orbr{\begin{cases}3x=3\\3x=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
vậy \(\orbr{\begin{cases}x=1\\x=\frac{-1}{3}\end{cases}}\)
\(\left|x+\frac{3}{4}\right|-5=-2\)
\(\left|x+\frac{3}{4}\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x+\frac{3}{4}=3\\x+\frac{3}{4}=-3\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=-\frac{15}{4}\end{cases}}\)
\(\left(1-2x\right)^2=9\)
\(\left(1-2x\right)^2=3^2\)
\(\Rightarrow1-2x=3\)
\(\Rightarrow2x=-2\)
\(\Rightarrow x=-1\)
vậy \(x=-1\)
\(\left(x+5\right)^3=-64\)
\(\left(x+5\right)^3=\left(-4\right)^3\)
\(\Rightarrow x+5=-4\)
\(\Rightarrow x=-9\)
vậy \(x=-9\)
\(\left(2x+1\right)^2=\frac{4}{9}\)
\(\left(2x+1\right)^2=\left(\frac{2}{3}\right)^2\)
\(\Rightarrow2x+1=\frac{2}{3}\)
\(\Rightarrow2x=\frac{-1}{3}\)
\(\Rightarrow x=\frac{-1}{6}\)
vậy \(x=-\frac{1}{6}\)
Bài 2
b, `\sqrt{3x^2}=x+2` ĐKXĐ : `x>=0`
`=>(\sqrt{3x^2})^2=(x+2)^2`
`=>3x^2=x^2+4x+4`
`=>3x^2-x^2-4x-4=0`
`=>2x^2-4x-4=0`
`=>x^2-2x-2=0`
`=>(x^2-2x+1)-3=0`
`=>(x-1)^2=3`
`=>(x-1)^2=(\pm \sqrt{3})^2`
`=>` $\left[\begin{matrix} x-1=\sqrt{3}\\ x-1=-\sqrt{3}\end{matrix}\right.$
`=>` $\left[\begin{matrix} x=1+\sqrt{3}\\ x=1-\sqrt{3}\end{matrix}\right.$
Vậy `S={1+\sqrt{3};1-\sqrt{3}}`
\(\left(\dfrac{1}{2}-\dfrac{x}{3}\right)^2=\dfrac{36}{49}\\ \Rightarrow\left(\dfrac{1}{2}-\dfrac{x}{3}\right)^2=\left(\dfrac{6}{7}\right)^2\\ \Rightarrow\dfrac{1}{2}-\dfrac{x}{3}=\pm\dfrac{6}{7}\\ \Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}-\dfrac{x}{3}=\dfrac{6}{7}\\\dfrac{1}{2}-\dfrac{x}{3}=-\dfrac{6}{7}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}\dfrac{x}{3}=-\dfrac{5}{14}\\\dfrac{x}{3}=\dfrac{19}{14}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{14}\times3\\x=\dfrac{19}{14}\times3\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{15}{14}\\x=\dfrac{57}{14}\end{matrix}\right.\)
\(\left(3-\dfrac{2}{3}x\right)^3=-\dfrac{1}{64}\\ \Rightarrow\left(3-\dfrac{2}{3}x\right)^3=\left(-\dfrac{1}{4}\right)^3\\ \Rightarrow3-\dfrac{2}{3}x=-\dfrac{1}{4}\\ \Rightarrow\dfrac{2}{3}x=3-\left(-\dfrac{1}{4}\right)\\ \Rightarrow\dfrac{2}{3}x=\dfrac{13}{4}\\ \Rightarrow x=\dfrac{13}{4}:\dfrac{2}{3}\\ \Rightarrow x=\dfrac{13}{4}\times\dfrac{3}{2}\\ \Rightarrow x=\dfrac{39}{8}\)
Hic 2 câu em làm dr xong tự nhiên thử lung tung rồi lại xóa bài ;-;