\(\dfrac{111\times118-33}{112\times115+185}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình không có tìm thấy ô trống đâu
mong mọi người thông cảm
\(\Leftrightarrow\left(\dfrac{x-11}{111}+1\right)+\left(\dfrac{x-12}{112}+1\right)=\left(\dfrac{x-23}{123}+1\right)+\left(\dfrac{x-24}{124}+1\right)\)
=>x+100=0
=>x=-100
A<50/100+50/100+50/100+50/100=4.50/100=2
=>A<2
A>4.50/150=4/3+1+1/3>1
=>dccm
A = \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{217.218}\)
A = \(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{217}-\dfrac{1}{218}\)
A = 1 - \(\dfrac{1}{218}\)
B = \(\dfrac{1}{110}\) + \(\dfrac{1}{111}\) + \(\dfrac{1}{112}\) + ... + \(\dfrac{1}{218}\)
Xét dãy số 110; 111; 112; ...; 218, dãy số này có số số hạng là:
(218 - 110) : 1 + 1 = 109 (số)
Mặt khác \(\dfrac{1}{110}\) > \(\dfrac{1}{111}>\dfrac{1}{112}>...>\dfrac{1}{218}\)
⇒ B = \(\dfrac{1}{110}\) + \(\dfrac{1}{111}\) + \(\dfrac{1}{112}+...+\dfrac{1}{218}\) < \(\dfrac{1}{110}\) + \(\dfrac{1}{110}\)+ ... +\(\dfrac{1}{110}\)
B < \(\dfrac{1}{110}\) x 109
B < 1 - \(\dfrac{1}{110}\)
\(\dfrac{1}{128}\) < \(\dfrac{1}{110}\) ⇒ A = 1 - \(\dfrac{1}{128}\) > 1 - \(\dfrac{1}{110}\) > B
A > B
\(\left(\dfrac{67}{111}+\dfrac{2}{33}-\dfrac{15}{117}\right).\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{12}\right)\)
\(=\left(\dfrac{67}{111}+\dfrac{2}{33}-\dfrac{15}{117}\right).\left(\dfrac{4}{12}-\dfrac{3}{12}-\dfrac{1}{12}\right)\)
\(=\left(\dfrac{67}{111}+\dfrac{2}{33}-\dfrac{15}{117}\right).\left(\dfrac{4-3-1}{12}\right)\)
\(=\left(\dfrac{66}{111}+\dfrac{2}{33}+\dfrac{15}{117}\right).0\)
\(=0\)
\(\left(\dfrac{67}{111}+\dfrac{2}{33}-\dfrac{15}{117}\right)\cdot\left(\dfrac{1}{3}-\dfrac{1}{4}-\dfrac{1}{12}\right)\\ =\left(\dfrac{67}{111}+\dfrac{2}{33}-\dfrac{15}{117}\right)\cdot\left(\dfrac{4}{12}-\dfrac{3}{12}-\dfrac{1}{12}\right)\\= \left(\dfrac{67}{111}+\dfrac{2}{33}-\dfrac{15}{117}\right)\cdot\left(\dfrac{4-3-1}{12}\right)\\= \left(\dfrac{67}{111}+\dfrac{2}{33}-\dfrac{15}{117}\right)\cdot0\\ =0\)
a) A > 1 20 + 1 20 + ... + 1 20 ⏟ 10 s o = 10 20 = 1 2 .
b) B = 1 5 + ... 1 9 + 1 10 + ... + 1 17 < 1 5 + ... + 1 5 ⏟ 5s o + 1 8 + ... + 1 8 ⏟ 8s o = 2
c) C = 1 10 + 1 11 + 1 12 ... + 1 18 + 1 19 < 1 10 + 1 10 + ... 1 10 ⏟ 9 s o = 1
\(\dfrac{111\times118-33}{112\times115+185}\)
= \(\dfrac{111\times\left(115+3\right)-33}{\left(111+1\right)\times115+185}\)
= \(\dfrac{111\times115+111\times3-33}{111\times115+115\times1+185}\)
= \(\dfrac{111\times115+333-33}{111\times115+115+185}\)
= \(\dfrac{111\times115+300}{111\times115+300}\)
= 1