Một người đi xe máy từ A đến B với vận tốc 30 km/h. Lúc về người đó đi theo đường khác dài hơn lúc đi 10km và do đường khó đi nên vận tốc giảm 5km/h so với khi đi. Vì thế nên thời gian về nhiều hơn thời gian đi là 48 phút. Tính quãng đường AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi độ dài quãng đường AB là x(km)(x>0)
độ dài quãng đường khác là x+15(km)
thời gian đi là: \(\frac{x}{30}\left(h\right)\)
thời gian về là:\(\frac{x+15}{40}\left(h\right)\)
theo đề bài: thời gian về ít hơn thời gian đi là 20 phút\(=\frac{1}{3}h\) nên ta có PT
\(\frac{x}{30}-\frac{x+15}{40}=\frac{1}{3}\)
\(\Leftrightarrow\frac{4x}{120}-\frac{3\left(x+15\right)}{120}=\frac{40}{120}\)
\(\Leftrightarrow4x-3x-45=40\)
\(\Leftrightarrow x=95\left(tmđk\right)\)
vậy đọ dài quãng đường AB là 95 km
Đổi: 20 phút = 1/3 h Gọi quãng đường AB là x (km) (x>0) Thời gian lúc đi là: x/30 (h) QĐ lúc về là: x + 15 (km) Thời gian lúc về là: (x + 15)/40 (h) Vì thời gian về ít hơn thời gian đi 20 phút nên ta có PT: x/30 - (x+15)/40 = 1/3 => ( x - 45)/120 = 1/3 => x - 45 = 40 => x = 85 (km) Vậy quãng đường AB dài 85 km
Gọi độ dài quãng đường lúc đi là x (km) với x>0
Độ dài quãng đường lúc về là: \(x+6\) (km)
Thời gian đi của người đó: \(\dfrac{x}{25}\) giờ
Thời gian về của người đó: \(\dfrac{x+6}{30}\) giờ
Do thời gian về ít hơn thời gian đi là \(10\) phút \(=\dfrac{1}{6}\) giờ nên ta có pt:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{x}{150}=\dfrac{11}{30}\)
\(\Leftrightarrow x=55\left(km\right)\)
S (km) | v (km/giờ) | t (giờ) | |
A→B | x | 25km/giờ | \(\dfrac{x}{25}\) |
Quãng đường khác | x+6 | 30km/giờ | \(\dfrac{x+6}{30}\) |
Theo đầu bài ta có phương trình:
\(\dfrac{x}{25}-\dfrac{x+6}{30}=\dfrac{1}{6}\)
\(\Leftrightarrow x=55\left(km\right)\)
Vậy quãng đường lúc đi là 55km
Đổi 30 phút = 1/2 giờ
Gọi vận tốc lúc về của người đó là x (x > 0)(km/h)
thì vận tốc lúc đi của người đó là x + 10 (km/h)
Thời gian người đó lúc về: 60/x (h)
Thời gian người đó lúc đi: 60/(x + 10) (h)
Theo bài ra ta có: 60/x - 60/(x + 10) = 1/2
=>120(x + 10) - 120x = x(x + 10)
<=> 120x + 1200 - 120x = x^2 + 10x
<=> x^2 + 10x - 1200 = 0
<=> x^2 - 30x + 40x - 1200 = 0
<=> x(x - 30) + 40(x - 30) = 0
<=> (x - 30)(x + 40) = 0
<=> x = 30 (TM)
hoặc x = -40 (KTM)
Vậy vận tốc lúc về là 30 km/h
: Gọi vận tốc lúc về là v (km/h) thì vận tốc lúc đi là (v +10) km/h . Điều kiện v>0
Thời gian lúc đi là: 60 : (v + 10) (giờ)
Thời gian lúc về là: 60 : v (giờ)
Thời gian về nhiều hơn thời gian đi 30 phút tức là 0,5 giờ
Ta có phương trình: 60: (v+10) = (60:v) - 0,5
Giải phương trình ta được v = 30 (Loại nghiệm âm) Đáp số: 30 km/h
Gọi độ dài AB là x
Thời gian đi là x/30
Thời gian về là x/25
Theo đề, ta có: x/25-x/30=1/2
=>x=75
Vận tốc lúc về của người đó là \(30-5=25\) (km/h)
Gọi độ dài quãng đường AB là x (km) với x>0
Thời gian đi từ A đến B: \(\dfrac{x}{30}\) giờ
Thời gian đi từ B về A: \(\dfrac{x}{25}\) giờ
Do thời gian về nhiều hơn thời gian đi là 30 phút =1/2 giờ nên ta có pt:
\(\dfrac{x}{25}-\dfrac{x}{30}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{x}{150}=\dfrac{1}{2}\)
\(\Rightarrow x=75\left(km\right)\)
Gọi độ dài quãng đường AB là x
Thời gian đi là x/40(h)
Thời gian về là x/35(h)
Theo đề, ta có: x/35-x/40=1/2
hay x=140
30 phút = (1/2) giờ
Gọi quãng đường AB là x (km). Điều kiện x > 0.
Thời gian xe máy đi từ A đến B là x/30 (giờ).
Thời gian xe máy đi từ B về A là x/24 (giờ).
Ta có phương trình:
⇔ 5x - 4x = 60 ⇔ x = 60 (thỏa mãn điều kiện)
Vậy quãng đường AB là 60 km.
Đổi \(45phút=\dfrac{3}{4}\left(h\right)\)
Gọi độ dài quãng đường AB là \(x\left(km,x>0\right)\)
Thì thời gian lúc đi từ A đến B là \(\dfrac{x}{40}\left(giờ\right)\)
Vận tốc lúc về là : \(40-10=30\) (km/h)
Thời gian lúc về là : \(\dfrac{x}{30}\left(h\right)\)
Vì thời gian lúc về nhiều hơn thời gian lúc đi \(\dfrac{3}{4}h\) nên ta có phương trình :
\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{3}{4}\)
\(\Leftrightarrow4x-3x=90\)
\(x=90\left(nhận\right)\)
Vậy quãng đường AB là 90 km
Gọi độ dài quãng đường AB là x
Thời gian đi là x/40(h)
Thời gian về là x/30(h)
Theo đề, ta có: x/30-x/40=3/4
hay x=90
Gọi độ dài AB là x
Thời gian đi là x/30
Thời gian về là \(\dfrac{x+10}{25}\)
Theo đề, ta có: (x+10)/25-x/30=4/5
=>x/25-2/5-x/30=4/5
=>x/150=6/5
=>x=180
`->` gọi quãng đường `AB` là : `x(km;x>0)`
`-` quãng đường của xe máy lúc về là : `x+10(km)`
`-` thời gian của xe máy khi đi từ `A` đến `B` là : `x/30` (giờ)
`-` đổi `48` phút `=4/5` giờ
`=>` theo bài ra ta có được phương trình như sau :
`(x+10)/25-x/30=4/5`
`<=>6x -60+5x=120`
`<=>x=120-60`
`<=>x=60` (nhận)
Vậy quãng đường `AB` là `60km`