Cho tam giác ABC, BH vuông góc AC
CMR: a) BH2 = AH . HC
Giải chi tiết ra từng bước đừng làm tắt
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta ABC\) vuông tại B đúng khum e
a) Xét \(\Delta BHA\) và \(\Delta CBA\) có:
\(\widehat{H}=\widehat{B}=90^o\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta BHA\sim\Delta CBA\left(g-g\right)\)
Chứng minh tương tự \(\Delta CBA\sim\Delta CHB\), từ đó suy ra \(\Delta BHA\sim\Delta CHB\Rightarrow\dfrac{AH}{BH}=\dfrac{BH}{HC}\Rightarrow BH^2=AH.HC\)
b) Từ câu a em đã có tam giác BHA và CBA đồng dạng rồi nên suy ra đc \(\dfrac{AB}{AC}=\dfrac{AH}{AB}\Rightarrow AB^2=AH.AC\)
1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{B}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
2: Ta có: ΔABC\(\sim\)ΔHBA
nên \(\dfrac{AB}{HB}=\dfrac{CB}{AB}\)
hay \(AB^2=HB\cdot BC\)
Lời giải:
Áp dụng hệ thức lượng trong tam giác vuông ta có:
AC2=CH.CBAC2=CH.CB
⇔AC2=(CB−BH)CB⇔AC2=(CB−BH)CB
⇔202=(CB−9)CB⇔CB2−9CB−400=0⇔202=(CB−9)CB⇔CB2−9CB−400=0
⇔(CB−25)(CB+16)=0⇔(CB−25)(CB+16)=0
Vì CB>0CB>0 nên CB=25CB=25 (cm)
CH=CB−BH=25−9=16CH=CB−BH=25−9=16 (cm)
Áp dụng định lý Pitago cho tam giác HACHAC:
AH=√AC2−CH2=√202−162=12AH=AC2−CH2=202−162=12 (cm)
3:
ΔAHB vuông tại H có HM là đường cao
nên AM*AB=AH^2
ΔAHC vuông tại H có HN là đường cao
nên AN*AC=AH^2
=>AM*AB=AN*AC
a: Đặt HB=x; HC=y(Điều kiện: x>0 và y>0)
Xét ΔABC có AB<AC
mà HB,HC lần lượt là hình chiếu của AB,AC trên BC
nên HB<HC
mà HB+HC=BC=25
nên \(HB< \dfrac{25}{2}=12,5;HC>12,5\)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HB\cdot HC=12^2=144\)
mà HB+HC=25
nên HB,HC lần lượt là các nghiệm của phương trình sau:
\(x^2-25x+144=0\)
=>\(x^2-9x-16x+144=0\)
=>x(x-9)-16(x-9)=0
=>(x-9)(x-16)=0
=>\(\left[{}\begin{matrix}x=9\\x=16\end{matrix}\right.\)
mà BH<HC
nên BH=9cm; CH=16cm
Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot CB\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{9\cdot25}=15\left(cm\right)\\AC=\sqrt{16\cdot25}=20\left(cm\right)\end{matrix}\right.\)
b: ΔABC vuông tại A có AM là đường trung tuyến
nên \(AM=\dfrac{BC}{2}=12,5\left(cm\right)\)
Xét ΔAHM vuông tại H có
\(sinAMH=\dfrac{AH}{AM}=\dfrac{12}{12,5}=\dfrac{24}{25}\)
=>\(\widehat{AMH}\simeq73^044'\)
c: ΔAHM vuông tại H
=>\(AH^2+HM^2=AM^2\)
=>\(HM^2=12,5^2-12^2=12,25\)
=>HM=3,5(cm)
\(S_{HAM}=\dfrac{1}{2}\cdot HA\cdot HM=\dfrac{1}{2}\cdot3,5\cdot12=6\cdot3,5=21\left(cm^2\right)\)
Áp dụng định lý Pitago ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}\)
\(\Rightarrow BC=\sqrt{9^2+12^2}\)
\(\Rightarrow BC=15\)
Ta có:
\(sinC=\dfrac{AB}{BC}=\dfrac{9}{15}\Rightarrow sinC=\dfrac{3}{5}\)
\(\Rightarrow C\approx36^052'\)
\(B=90^0-C=53^08'\)
a) Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=9^2+12^2=225\)
hay BC=15
Xét ΔABC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{9}{15}=\dfrac{3}{5}\)
nên \(\widehat{C}\simeq37^0\)
\(\Leftrightarrow\widehat{B}=53^0\)
a) Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔAHB=ΔAHC(Cạnh huyền-cạnh góc vuông)
Vẫn chưa hiểu dạng này hả em:)) Lần này chi tiết hết cỡ nhé
Xét \(\Delta BHA\) và \(\Delta CBA\) có:
\(\widehat{BHA}=\widehat{CBA}=90^o\)
\(\widehat{BAC}\) chung
\(⇒ Δ B H A ∼ Δ C B A ( g − g )\) (1)
Xét \(\Delta CHB\) và \(\Delta CBA\) có:
\(\widehat{CHB}=\widehat{CBA}=90^o\)
\(\widehat{BCA}\) chung
\(\Rightarrow\)\(Δ C HB ∼ Δ C BA(g-g)\) (2)
Từ (1) và (2) \(\Rightarrow\)\(Δ B H A ∼ Δ C H B ⇒ \) \(\dfrac{AH}{BH}=\dfrac{BH}{HC}\) \(⇒ B H ^2 = A H . H C\)
Tự vẽ hình và lưu ý ghi đủ đề bài ∆ABC vuông tại B e nhé