K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

ta sẽ tìm liên hệ giữa avà a2 .

vì  \(a,b,c\ge-1\)nên \(a^2\left(a+1\right)\ge0\Leftrightarrow a^3\ge-a^2\)

tương tự và cộng theo vế ta được \(a^3+b^3+c^3\ge-\left(a^2+b^2+c^2\right)=-3\)

Dấu = xảy ra khi a=b=c=-1 (làm tắt tý)

22 tháng 5 2017

GTNN = -3 khi a,b,c = -1

11 tháng 7 2015

Áp dụng Côsi:

\(a^2+\left(\frac{19-\sqrt{37}}{12}\right)^2\ge2\sqrt{\left(\frac{19-\sqrt{37}}{12}\right)^2.a^2}=2.\frac{19-\sqrt{37}}{12}a\)

\(b^2+\left(\frac{19-\sqrt{37}}{12}\right)^2\ge2.\frac{19-\sqrt{37}}{12}b\)

\(c^3+\left(\frac{\sqrt{37}-1}{6}\right)^3+\left(\frac{\sqrt{37}-1}{6}\right)^3\ge3\sqrt[3]{\left(\frac{\sqrt{37}-1}{6}\right)^3\left(\frac{\sqrt{37}-1}{6}\right)^3.c^3}=3.\left(\frac{\sqrt{37}-1}{6}\right)^2c\)

\(\Rightarrow a^2+b^2+c^3+2\left(\frac{19-\sqrt{37}}{12}\right)^2+2\left(\frac{\sqrt{37}-1}{6}\right)^3\ge2.\frac{19-\sqrt{37}}{12}a+2.\frac{19-\sqrt{37}}{12}b+3.\left(\frac{\sqrt{37}-1}{6}\right)^2c\)

\(\Rightarrow a^2+b^2+c^3+2.\left(\frac{19-\sqrt{37}}{12}\right)^2+3.\left(\frac{\sqrt{37}-1}{6}\right)^3\ge\frac{19-\sqrt{37}}{6}\left(a+b+c\right)=\frac{19-\sqrt{37}}{2}\)

\(\Rightarrow a^2+b^2+c^3\ge\frac{19-\sqrt{37}}{2}-2.\left(\frac{19-\sqrt{37}}{12}\right)^2-2.\left(\frac{\sqrt{37}-1}{6}\right)^3\)

Dấu "=" xảy ra khi và chỉ khi \(a=b=\frac{19-\sqrt{37}}{12};\text{ }c=\frac{\sqrt{37}-1}{6}\)

Vậy GTNN của biệu thức là .......

 

15 tháng 10 2020

a) Áp dụng bđt AM-GM: \(+\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)

Dấu "=" xay ra khi \(x=y=z\)

b) Bổ đề; \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng : \(A=x^2+y^2+z^2\ge\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

c) Bổ đề: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng: \(B\le\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

d) \(A+B=x^2+y^2+z^2+xy+yz+zx=\left(x+y+z\right)^2-\left(xy+yz+zx\right)\)

\(\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}\)

\(=\frac{2}{3}\left(x+y+z\right)^2=6\)

Dấu "=" xảy ra khi \(x=y=z=1\)

15 tháng 10 2020

Bài này tuy dễ nhưng hơi loằng ngoằng giữa các câu :))

a. Cách phổ thông : x2 + y2 + z2\(\ge\)xy + yz + zx

<=> 2 ( x2 + y2 + z2 )\(\ge\)2 ( xy + yz + zx )

<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2zx + x2 )\(\ge\)0

<=> ( x - y )2 + ( y - z )2 + ( z - x )2\(\ge\)0 ( * )

Vì ( x - y )2 \(\ge\)0 ; ( y - z )2 \(\ge\)0 ; ( z - x )2\(\ge\)0\(\forall\)x ; y ; z

=> ( * ) đúng 

=> A\(\ge\)B ; dấu "=" xảy ra <=> x = y = z

b. Xài Cauchy cho mới

( x2 + y2 + z2 ) ( 12 + 12 + 12 )\(\ge\)( x + y + z )2 = 32 = 9

<=> 3 ( x2 + y2 + z2 )\(\ge\)

<=> x2 + y2 + z2\(\ge\)3

Dấu "=" xảy ra <=> x = y = z = 1

Vậy minA = 3 <=> x = y = z = 1

c. Theo câu a và câu b ta có : 3 ( xy + yz + zx )\(\le\)( x + y + z )2 = 32 = 9

<=> xy + yz + zx\(\le\)3

Dấu "=" xảy ra <=> x = y = 1

Vậy maxB = 3 <=> x = y = 1

d. x + y + z = 3 . BP 2 vế ta được

x2 + y2 + z2 + 2( xy + yz + zx ) = 9

Hay A + 2B = 9 . Mà B\(\le\)3 ( câu b )

=> A + B \(\ge\)6

Dấu "=" xảy ra <=> x = y = z = 1

Vậy min A + B = 6 <=> x = y = z = 1

NV
13 tháng 2 2020

1. Không dịch được đề

2. \(\left(m+2\right)x^2-6x+1\le0\) \(\forall x\)

\(\Leftrightarrow\left\{{}\begin{matrix}m+2< 0\\\Delta'=9-\left(m+2\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< -2\\m\ge7\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại m thỏa mãn

3. \(P=\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}=\frac{a^2+b^2}{4ab}+\frac{ab}{a^2+b^2}+\frac{3\left(a^2+b^2\right)}{4ab}\)

\(P\ge2\sqrt{\frac{ab\left(a^2+b^2\right)}{4ab\left(a^2+b^2\right)}}+\frac{6ab}{4ab}=\frac{5}{2}\)

Dấu "=" xảy ra khi \(a=b\)