K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 7 2021

\(y'=3x^2-2\left(2m-1\right)x+2-m\)

Hàm có các cực trị dương khi pt \(y'=0\) có 2 nghiệm dương phân biệt

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(2m-1\right)^2-3\left(2-m\right)>0\\x_1+x_2=\dfrac{2\left(2m-1\right)}{3}>0\\x_1x_2=\dfrac{2-m}{3}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m^2-m-5>0\\m>\dfrac{1}{2}\\m< 2\end{matrix}\right.\) \(\Rightarrow\dfrac{5}{4}< m< 2\)

2 tháng 1 2020

Đáp án là B

4 tháng 4 2018

27 tháng 10 2017

8 tháng 1 2023

H/s cắt `Ox` tại `A=>y=0=>0=(m+1)x+2<=>x=-2/[m+1]=>OA=|[-2]/[m+1]|`

H/s cắt `Oy` tại `B=>x=0=>y=2=>OB=|2|=2`

Để `\triangle AOB` cân `=>OA=OB`

     `<=>|[-2]/[m+1]|=2`

     `<=>|-2|=2|m+1|`

     `<=>|m+1|=1<=>[(m+1=1),(m+1=-1):}<=>[(m=0),(m=-2):}`

17 tháng 1 2019