Rút gọn biểu thức sau
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{8-2x}{x^2+x-20}=-\dfrac{2\left(4-x\right)}{\left(4-x\right)\left(x+5\right)}=\dfrac{-2}{x+5}\)
Để biểu thức trên nhận giá trị dương khi
\(x+5< 0\)do -2 < 0
\(\Leftrightarrow x< -5\)
d: \(D=x^3-6x^2+12x-100\)
\(=x^3-6x^2+12x-8-92\)
\(=\left(x-2\right)^3-92\)
Khi x=-98 thì \(D=\left(-98-2\right)^3-92=-1000000-92=-1000092\)
e: \(E=\left(x+1\right)^3+6\left(x+1\right)^2+12x+20\)
\(=\left(x+1\right)^3+6\left(x+1\right)^2+12\left(x+1\right)+8\)
\(=\left(x+1+2\right)^3\)
\(=\left(x+3\right)^3\)
Khi x=5 thì \(E=\left(5+3\right)^3=8^3=512\)
f: \(F=\left(2x-1\right)\left(4x^2+2x+1\right)-7\left(x^3+1\right)\)
\(=\left(2x\right)^3-1^3-7x^3-7\)
\(=x^3-8\)
Khi x=-1/2 thì \(F=\left(-\dfrac{1}{2}\right)^3-8=-\dfrac{1}{8}-8=-\dfrac{65}{8}\)
g: \(G=\left(-x-2\right)^3+\left(2x-4\right)\left(x^2+2x+4\right)-x^2\left(x-6\right)\)
\(=-\left(x+2\right)^3+2\left(x-2\right)\left(x^2+2x+4\right)-x^3+6x^2\)
\(=-x^3-6x^2-12x-8+2\left(x^3-8\right)-x^3+6x^2\)
\(=-2x^3-12x-8+2x^3-16=-12x-24\)
Khi x=-2 thì \(G=-12\cdot\left(-2\right)-24=24-24=0\)
h: \(H=\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+8\right)+3\left(x^2-16\right)\)
\(=x^3-3x^2+3x-1-x^3-8+3x^2-48\)
\(=3x-57\)
Khi x=-1/2 thì \(H=3\cdot\dfrac{-1}{2}-57=-1,5-57=-58,5\)
Đáp án: A
Ta có:
A = c o s 2 x + sin 2 x + sin 2 x 2 sin x + c o s x
\(2\sqrt{3x}-\sqrt{75x}\)
\(=2\sqrt{3x}-5\sqrt{3x}\)
\(=-3\sqrt{3x}\)
\(A=\sqrt[3]{\left(4-2\sqrt[3]{3}\right)\left(\sqrt[3]{3}-1\right)}\)
\(=\sqrt[3]{4\sqrt[3]{3}-4-2\sqrt[3]{9}+2\sqrt[3]{3}}\)
\(=\sqrt[3]{4-2\sqrt[3]{9}+6\sqrt[3]{3}}\)
c: \(C=\dfrac{\left(\sqrt{a}-2\right)\left(a+2\sqrt{a}+4\right)+2\sqrt{a}\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)
\(=\dfrac{a+2\sqrt{a}+4+2\sqrt{a}}{\sqrt{a}+2}=\sqrt{a}+2\)
d: \(=\dfrac{1}{2a-1}\cdot a^2\sqrt{5}\cdot\left|2a-1\right|=\pm a^2\sqrt{5}\)
e: \(=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\sqrt{3}\left|x+y\right|}{2}\)
\(=\pm\dfrac{\sqrt{3}}{x-y}\)