K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2023

2 x 2 x 2 x....x 2 =22023

23 tháng 6 2023

2^2023

21 tháng 9 2023

S = 1! + 2! + 3! +...+ 2023!

S = (1! + 2! + 3! + 4!) + (5! + 6! +...+2023!)

S = (1 + 2 + 6 + 24) + (5! + 6!+...+2023!)

S = 33 + (5! +6!+...+ 2023!)

Vì 5!; 6!; 7!;...2023! đều chứa thừa số 5 nên 

B = 5! + 6! + 7!+...+ 2023! ⋮ 5

33 không chia hết cho 5

S không chia hết cho 5

 

 

5 tháng 9 2023

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)

6 tháng 9 2023

Bài 1:

S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)

Nhóm 4 thừa số 2 vào một nhóm thì vì:

2023 : 4 = 505 dư 3 

Vậy

S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)

S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8

S = \(\overline{..6}\) x 8

S = \(\overline{..8}\)

                

       

6 tháng 9 2023

             Bài 2:

S = 3 x 13 x 23 x...x 2023

Xét dãy số: 3; 13; 23;..;2023

Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10

Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)

 Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.

  Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)

  Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)

  A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)

   A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27

   A = \(\overline{..7}\)

   

 

 

 

3 tháng 3 2023

giúp tôi

 

3 tháng 3 2023

tôi đang cần gấp

25 tháng 12 2023

a: \(\left|a-2b+3\right|^{2023}>=0\forall a,b\)

\(\left(b-1\right)^{2024}>=0\forall b\)

Do đó: \(\left|a-2b+3\right|^{2023}+\left(b-1\right)^{2024}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}a-2b+3=0\\b-1=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}b=1\\a=2b-3=2\cdot1-3=-1\end{matrix}\right.\)

Thay a=-1 và b=1 vào P, ta được:

\(P=\left(-1\right)^{2023}\cdot1^{2024}+2024=2024-1=2023\)

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3

11 tháng 5 2023

1)\(\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{11}{70}\)

\(\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{x\left(x+3\right)}\right):3=\dfrac{11}{70}\)

\(\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+.....+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{11}{70}\cdot3\)

\(\dfrac{1}{2}-\dfrac{1}{x+3}=\dfrac{33}{70}\)

\(\dfrac{1}{x+3}=\dfrac{1}{2}-\dfrac{33}{70}\)

\(\dfrac{1}{x+3}=\dfrac{2}{70}\)

\(\dfrac{1}{x+3}=\dfrac{1}{35}\)

\(x+3=35\\ x=35-3\\ x=32\)

2) Số góc đc tạo thành từ 2023 tia chung gốc là:\(\dfrac{2023\cdot2022}{2}=2045253\) (góc)

11 tháng 5 2023

Bài 1 thì bạn Ánh làm đúng rồi

Bài 2 thì giải chi tiết như này em nhé:

Cứ 1 tia tạo với 2023 - 1 tia còn lại là 2023 - 1 góc

Với 2023 tia thì tạo được số góc là:  (2023 - 1)\(\times\) 2023 góc

Theo cách tính trên thì mỗi góc đã được tính hai lần

Vậy số góc tạo được là: (2023-1)\(\times\) 2023: 2 = 2045253 (góc)

Kết luận: ...