Cho tam giác ABC vuông cân tại A. Giả sử có một điểm M trong tam giác thỏa mãn: Góc MBA=MAC=MCB. Chứng minh rằng MB=2.MA?
#Toán lớp 7
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
18 tháng 9 2023
a)
Xét 2 tam giác vuông AMC và AMB có:
AM chung
BM=CM (gt)
=>\(\Delta AMC = \Delta AMB\) (hai cạnh góc vuông)
=> AC=AB (2 cạnh tương ứng)
=> Tam giác ABC cân tại A
b)
Kẻ MH vuông góc với AB (H thuộc AB)
MG vuông góc với AC (G thuộc AC)
Xét 2 tam giác vuông AHM và AGM có:
AM chung
\(\widehat {HAM} = \widehat {GAM}\) (do AM là tia phân giác của góc BAC)
=>\(\Delta AHM = \Delta AGM\) (cạnh huyền – góc nhọn)
=> HM=GM (2 cạnh tương ứng)
Xét 2 tam giác vuông BHM và CGM có:
BM=CM (giả thiết)
MH=MG(chứng minh trên)
=>\(\Delta BHM = \Delta CGM\)(cạnh huyền – cạnh góc vuông)
=>\(\widehat {HBM} = \widehat {GCM}\)(2 góc tương ứng)
=>Tam giác ABC cân tại A.
Gọi N là giao điểm của BM và AC. Do \(\widehat{NAM}=\widehat{NBA}\) nên \(\Delta NAM\) đồng dạng với \(\Delta NBA\), suy ra \(\dfrac{NA}{NB}=\dfrac{NM}{NA}\) \(\Rightarrow NA^2=NB.NM\) (1)
Mặt khác, vì tam giác ABC vuông cân tại A nên \(\widehat{ABC}=\widehat{ACB}=45^o\), lại có \(\widehat{MBA}=\widehat{MCA}\) nên ta có \(\widehat{ABC}-\widehat{MBA}=\widehat{ACB}-\widehat{MCA}\) hay \(\widehat{NBC}=\widehat{NCM}\). Từ đây có\(\Delta NCM\) đồng dạng với tam giác \(\Delta NBC\), suy ra \(\dfrac{NC}{NB}=\dfrac{NM}{NC}\Rightarrow NC^2=NB.NM\) (2)
Từ (1) và (2), suy ra \(NA^2=NC^2\left(=NB.NM\right)\) \(\Rightarrow NA=NC\), suy ra N là trung điểm của đoạn AC \(\Rightarrow\dfrac{AN}{AC}=\dfrac{1}{2}\). Mà \(AC=AB\) nên \(\dfrac{AN}{AB}=\dfrac{1}{2}\)
Mặt khác, \(\widehat{BAC}=\widehat{MAN}+\widehat{BAM}=90^o\), đồng thời \(\widehat{MAN}=\widehat{MBA}\) nên \(\widehat{MBA}+\widehat{BAM}=90^o\), do đó \(\Delta ABM\) vuông tại M \(\Rightarrow\widehat{AMB}=90^o\). Từ đó lại suy ra \(\Delta BAM\) và \(\Delta BNA\) đồng dạng, suy ra \(\dfrac{AN}{AM}=\dfrac{BA}{BM}\) hay \(\dfrac{AN}{AB}=\dfrac{AM}{BM}\). Nhưng do \(\dfrac{AN}{AB}=\dfrac{1}{2}\left(cmt\right)\) nên \(\dfrac{AM}{BM}=\dfrac{1}{2}\Rightarrow BM=2AM\) (đpcm)