Cho tam giác ABC vuông tại A,có AB = 3cm,AC = 4cm,đường cao AD
a)Tính độ dài CD
b)Gọi I,K lần lượt là hình chiếu của D trên AB và AC.Chứng minh rằng:AI*AB = AD^2
c)CM rằng: AI*AB = AK*AC
d)CM rằng: tam giác ABC đồng dạng tam giác AKI
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có BD là đường phân giác ứng với cạnh AC(Gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{CB}\)(Tính chất đường phân giác của tam giác)
\(\Leftrightarrow\dfrac{AB}{3}=\dfrac{BC}{5}\)
Ta có: AD+CD=AC(D nằm giữa A và C)
nên AC=3+5=8(cm)
Đặt \(\dfrac{AB}{3}=\dfrac{BC}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}AB=3k\\BC=5k\end{matrix}\right.\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow\left(3k\right)^2+8^2=\left(5k\right)^2\)
\(\Leftrightarrow9k^2+64=25k^2\)
\(\Leftrightarrow16k^2=64\)
\(\Leftrightarrow k^2=4\)
hay k=2
Suy ra: \(\left\{{}\begin{matrix}AB=3\cdot k=3\cdot2=6\left(cm\right)\\BC=5\cdot k=5\cdot2=10\left(cm\right)\end{matrix}\right.\)
Vậy: AB=6cm; BC=10cm
b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB
nên \(AD\cdot AB=AH^2\left(1\right)\)
Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC
nên \(AE\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)
hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét ΔADE vuông tại A và ΔACB vuông tại A có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Do đó: ΔADE\(\sim\)ΔACB
Suy ra: \(\widehat{ADE}=\widehat{ACB}\)
a: BC=BH+CH=25cm
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC
\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)
b: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
a: BC=BH+CH=25cm
Xét ΔABC vuông tại A có AH là đường cao
nên AB^2=BH*BC; AC^2=CH*BC; AH^2=HB*HC
\(AB=\sqrt{BH\cdot BC}=\sqrt{9\cdot25}=15\left(cm\right)\)
\(AC=\sqrt{16\cdot25}=20\left(cm\right)\)
\(AH=\sqrt{HB\cdot HC}=12\left(cm\right)\)
b: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hình chữ nhật
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
góc BAH=góc CAK
=>ΔABH đồng dạngvơi ΔACK
Xét ΔHDB vuông tại H và ΔKDC vuông tại K có
góc HDB=góc KDC
=>ΔHDB đồng dạng vơi ΔKDC
b: ΔABH đồng dạng với ΔACK
=>AH/AK=HB/CK=DH/DK
=>AH*DK=AK*DH
c: AD là phân giác
=>BD/AB=CD/AC
=>BD/5=CD/6=(BD+CD)/(5+6)=7/11
=>BD=35/11cm; CD=42/11cm