K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Sorry em không bjt làm đâu , em mới học lớp 5 thui

20 tháng 5 2017

f(5).f(-2) = (25a + 5b + c)(4a - 2b + c) = [(15a + 5b) + 10a + c][(-6a - 2b) + 10a + c]

= [3(3a + b) + 10a + c][-2(3a + b) + 10a + c] = (10a + c)(10a + c) = (10a + c)2 \(\ge0\)

Vậy \(f\left(5\right).f\left(-2\right)\) có giá trị không âm

10 tháng 11 2016

Giả sử f(0), f(1), f(2) có giá trị nguyên là m,n,p. Theo đề bài ta có

\(1\hept{\begin{cases}c=m\left(1\right)\\a+b+c=n\left(2\right)\\4a+2b+c=p\left(3\right)\end{cases}}\)

Ta lấy (3) - 2(2) + (1) vế theo vế ta được

2a = p - 2n + m

=> 2a là số nguyên

Ta lấy 4(2) - (3) - 3(1) vế theo vế ta được

2b = 4n - p - 3m

=> 2b cũng là số nguyên

12 tháng 7 2021

¿¿¿¿¿¿¿¿

 

2 tháng 4 2017

ko biết

*f(0) nguyên suy ra 0+0+c=c nguyên

*Vì c nguyên và f(1)=a+b+c nguyên suy ra a+b nguyên

*Tương tự vs f(2)=4a+2b+c suy ra 2a nguyên (Vì 4a+2b và 2(a+b) đều nguyên)

Vì 2a và 2(a+b) nguyên suy ra 2b nguyên (đpcm)

3 tháng 4 2016

của t là số dg

10 tháng 5 2017

không thể là số âm

6 tháng 4 2022

\(f\left(1\right)=a+b+c;f\left(5\right)=25a+5b+c\)

\(f\left(1\right)+f\left(5\right)=a+b+c+25a+5a+c=26a+6a+2c=2\left(13a+3a+c\right)>0\)

6 tháng 4 2022

\(f\left(1\right)=a.\left(1^2\right)+b.1+c=a.b.c\)

\(f\left(5\right)=5^2.a+b.5+c=25a+5b+c\)

\(f\left(1\right)+f\left(5\right)=a+b+c+25a+5b+c\)

\(f\left(1\right)+f\left(5\right)=26a+6b+2c=2.13a+2.3b+2c=2\left(13a+3b+c\right)>0\)

24 tháng 4 2019

+)\(f\left(0\right)=c\)\(f\left(0\right)\)nguyên nên suy ra c nguyên

+) \(f\left(1\right)=a+b+c\);  \(f\left(1\right),c\)nguyên  nên suy ra a+b nguyên

+) \(f\left(2\right)=4a+2b+c\)\(f\left(2\right),c,a+b\)nguyên nên  suy ra 2a nguyên => 2b nguyên

Ta có: \(f\left(5\right)=25a+5b+c=10.2.a+5\left(a+b\right)+c\)

Vì 2a, a+b, c nguyên 

=> \(f\left(5\right)\)nguyên

\(f\left(6\right)=36a+6b+c=15.2.a+6\left(a+b\right)+c\)nguyên

\(f\left(7\right)=49a+7b+c=21.2a+7\left(a+b\right)+c\)nguyên

24 tháng 4 2019

Câu hỏi của nguyễn phạm khánh linh - Toán lớp 7 - Học toán với OnlineMath'

Em tham khảo nhá

22 tháng 2 2019

Ta có:

\(f\left(0\right)=c\in Z\)(1)

\(f\left(1\right)=a+b+c\in Z\)(2)

\(f\left(2\right)=4a+2b+c\in Z\)(3)_

Từ (1), (2) => \(a+b\in Z\)=> \(2a+2b\in Z\)(4)

Từ (1), (3)=> 4a+2b\(\in Z\)(5)

Từ (4), (5) => \(\left(4a+2b\right)-\left(2a+2b\right)\in Z\)

=> \(2a\in Z\)=> \(2b\in Z\)