K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
29 tháng 12 2023

Lời giải:
Nếu $p$ chia hết cho $5$ thì $p=5$. Khi đó $4p^2+1=4.5^2+1=101$ là snt và $6p^2+1=6.5^2+1=151$ là snt (thỏa mãn) 

Nếu $p$ không chia hết cho 5. Khi đó $p^2$ chia $5$ dư $1$ hoặc $4$.

+ Nếu $p^2$ chia $5$ dư $1$

$\Rightarrow 4p^2$ chia $5$ dư $4$. Khi đó $4p^2+1$ chia hết cho $5$. Mà $4p^2+1>5$ nên không là snt (trái với giả thiết) 

+ Nếu $p^2$ chia $5$ dư $4$

$\Rightarrow 6p^2$ chia $5$ dư $24$, hay dư $4$

$\Rightarrow 6p^2+1$ chia hết cho $5$. Mà $6p^2+1>5$ nên không là snt (trái với đề) 

Vậy $p=5$ là kết quả duy nhất thỏa mãn.

16 tháng 9 2017

xét p=2 , 5 thỏa mãn .

xét p=3 ko thỏa mãn

xét p>5 => ko thỏa mãn 4p^2+1 và 6p^2 +1 là snt

2 tháng 11 2017

a) Gọi p là số nguyên tố cần tìm.
Nếu p chia hết cho 3 và p là số nguyên tố nên  p = 3.
Ta có \(2p^2+1=19\).
Vậy p = 3 (thỏa mãn).
Nếu p chia cho 3 dư 1, ta có p = 3k + 1. ( k là một số tự nhiên).
\(2p^2+1=2.\left(3k+1\right)^2+1=2\left(9k^2+6k+1\right)+1=18k^2+12k+3\)\(=3\left(6k^2+4k+1\right)\) chia hết cho 3.
Nếu p chia cho 3 dư 2, ta có p = 3k + 2, (k là một số tự nhiên).
\(2p^2+1=2\left(3k+2\right)^2+1=2\left(9k^2+12k+4\right)+1\)\(=18k^2+24k+9=3\left(6k^2+8k+3\right)\) chia hết cho 3.
vậy p = 3 là giá trị cần tìm.
 

2 tháng 11 2017

b) Dễ thấy p = 2 không phải là giá trị cần tìm.
vậy p là một số nguyên tố lẻ suy ra p có tận cùng là 1, 3, 5, 7.
nếu p có tận cùng là 1 thì \(p^2\) cũng có tận cùng là 1. Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 3 thì \(p^2\) có tận cùng là 9. Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 5 thì  p phải bằng 5. Thay vào ta thấy của \(4p^2+1\) và \(6p^2+1\) đều là các số nguyên tố.
nếu p có tận cùng là 7 thì \(p^2\) có tận cùng bằng 9.  Suy ra \(6p^2+1\) có tận cùng là 5. (loại)
nếu p có tận cùng là 9 thì \(p^2\) có tận cùng bằng 1.  Suy ra \(4p^2+1\) có tận cùng là 5. (loại)
vậy p = 5 là giá trị cần tìm.

11 tháng 6 2018

xem lại đề đi bn ơi, t nghĩ phải là tìm số nguyên tố p chứ ?

11 tháng 6 2018

uk mk vt thiếu

b)

 p = 2 thì 4p2 + 1 = 25 không là SNT.(số nguyên tố) 
* p = 3 thì 6p2 + 1 = 55 không là SNT 
* p = 5 thì 4p2 + 1=101 và 6p2 + 1 = 151 là SNT vậy p = 5 thỏa điều kiện đề bài. 
* P > 5 => p = 5k ±1, hoặc p = 5k ± 2. 
khi: p = 5k ± 1thì 
4p+ 1 = 4(25k2 ± 10k + 1) + 1= 4.25k± 4.10k + 5 > 5 và chia hết cho 5 
khi p = 5k ± 2 thì: 
6k2 + 1 =6(25k± 10k + 4) + 1 = 6.25k2 ± 6.10k + 25 > 5 và chia hết cho 5 
vậy khi p>5 thì 4p2+1 và 6p2+1 không đồng thời là SNT. 
=> p = 5 là SNT cần tìm.

16 tháng 3 2019

Tìm số nguyên tố p để 4p^2+1 và 6p^2+1 cũng là số nguyên tố? | Yahoo Hỏi & Đáp

Bạn tham khảo

17 tháng 3 2019

Bạn giải ra luôn được không

26 tháng 2 2021

Bài 1:

Nếu p = 2 thì p + 2 = 2 + 2 = 4 không là số nguyên tố

2 + 4 = 6 không là số nguyên tố

Vậy p = 2 không thỏa mãn

Nếu p = 3 thì p + 2 = 3 + 2 = 5 là số nguyên tố

3 + 4 = 7 là số nguyên tố

Vậy p = 3 thỏa mãn

Nếu p > 3 thì p = 3k + 1 hoặc p = 3k + 2 

Khi p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3 = 3(k + 1) không là số nguyên tố

Vậy p = 3k + 1 không thỏa mãn

Khi p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 = 3(k + 2) không là số nguyên tố

Vậy p = 3k + 2 không thỏa mãn

Vậy p = 3 thỏa mãn duy nhất.

26 tháng 2 2021

Bài 2:

Khi ta xét 3 số tự nhiên liên tiếp 4p; 4p + 1; 4p + 2 thì chắc chắn sẽ có một số chia hết cho 3

p là số nguyên tố; p > 3 nên p không chia hết cho 3 => 4p không chia hết cho 3

Ta thấy 2p + 1 là số nguyên tố; p > 3 => 2p + 1 > 3 nên 2p + 1 không chia hết cho 3 => 2(2p + 1) không chia hết cho 3 -> 4p + 2 không chia hết cho 3

Vì thế 4p + 1 phải chia hết cho 3

Mà p > 3 nên 4p + 1 > 3

=> 4p + 1 không là số nguyên tố. 4p + 1 là hợp số.