Bài 27 (trang 115 SGK Toán 9 Tập 1)
Từ một điểm $A$ nằm bên ngoài đường tròn $(O)$, kẻ các tiếp tuyến $AB$, $AC$ với đường tròn ($B$, $C$ là các tiếp điểm). Qua điểm $M$ thuộc cung nhỏ $BC$, kẻ tiếp tuyến với đường tròn $(O)$, nó cắt các tiếp tuyến $AB$ và $AC$ theo thứ tự ở $D$ và $E$. Chứng minh rằng chu vi tam giác $ADE$ bằng $2AB$.
Ta có
DB=DM; EC=EM; AB=AC (2 tiếp tuyến cùng xp từ 1 điểm ngoài đường tròn thì khoảng cách từ điểm đó đến các tiếp điểm = nhau)
\(C_{ADE}=AD+DM+AE+EM=AD+DB+AE+EC=\)
\(=AB+AC=2AB\)
Theo tính chất hai tiếp tuyến cắt nhau ta có: DM=DB, EM=ECDM=DB,EM=EC.
Chu vi tam giác ADEADE bằng :
AD+DE+AE=AD+DM+ME+EAAD+DE+AE=AD+DM+ME+EA
=AD+DB+EC+AE=AD+DB+EC+AE
=AB+AC=2 . AB=AB+AC=2.AB .