K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Bình 2 vế

\(\left(a+b\right)^2\le\left(\left|a\right|+\left|b\right|\right)^2\)

\(\Leftrightarrow a^2+2ab+b^2\le a^2+2\left|ab\right|+b^2\)

\(\Rightarrow ab\le\left|ab\right|\) (luôn đúng)

Vậy \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)

Dấu "=" xảy ra khi \(ab=\left|ab\right|\Leftrightarrow ab\ge0\)

19 tháng 5 2017

-A - B  = -A - B

Lúc nào chả là dấu bằng , còn dấu < thì ko biết

Giá trị nhỏ nhất là : A và B càng lớn thì càng nhỏ

Thế thôi

29 tháng 4 2016

a) Dấu " = " xảy ra khi A và B bằng 0

b) Thiếu đề

c) Thiếu đề

29 tháng 4 2016

ai do k minh nha

21 tháng 11 2017

Câu a)

Em mới hc lớp 7 nên chỉ chứng minh cái phần dấu bằng xảy ra khi nào thui. Ko biết có đúng ko

Theo đề bài Ta có

\(\left(ac+bd\right)^2=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

\(\Leftrightarrow\left(ac+bd\right)^2=\left(a^2+b^2\right)^2=\left(c^2+d^2\right)^2\)

Suy ra \(ac=a^2,bd=b^2,ac=b^2\)

Suy ra \(a=b=c=d\)

Vậy dấu bằng xảy ra khi \(a=b=c=d\)

21 tháng 11 2017

ukm nhưng anh cần câu b

30 tháng 12 2015

b) căn bậc hai(x^2+5*x+1)

30 tháng 12 2015

b) căn bậc hai(x^2+5*x+1)

23 tháng 12 2016

a/ \(\left|A+B\right|\le\left|A\right|+\left|B\right|\)

\(\Leftrightarrow\left(\left|A+B\right|\right)^2\le\left(\left|A\right|+\left|B\right|\right)^2\)

\(\Leftrightarrow AB\le\left|A\right|.\left|B\right|\) (luôn đúng)

Đẳng thức xảy ra khi \(A.B\ge0\)

b/ \(M=\sqrt{x^2+4x+4}+\sqrt{x^2-6x+9}=\sqrt{\left(x+2\right)^2}+\sqrt{\left(x-3\right)^2}\)

\(=\left|x+2\right|+\left|3-x\right|\ge\left|x+2+3-x\right|=5\)

Đẳng thức xảy ra khi \(\left(x+2\right)\left(3-x\right)\ge0\Leftrightarrow-2\le x\le3\)

Vậy minM = 5 tại \(-2\le x\le3\)

c/ \(\sqrt{4x^2+20x+25}+\sqrt{x^2-8x+16}=\sqrt{x^2+18x+81}\) (bạn tự tìm đkxđ)

\(\Leftrightarrow\sqrt{\left(2x+5\right)^2}+\sqrt{\left(x-4\right)^2}=\sqrt{\left(x+9\right)^2}\)

\(\Leftrightarrow\left|2x+5\right|+\left|4-x\right|=\left|x+9\right|\)

Áp dụng BĐT ở a) cho vế trái : \(\left|2x+5\right|+\left|4-x\right|\ge\left|2x+5+4-x\right|=\left|x+9\right|\)

Đẳng thức xảy ra khi \(\left(2x+5\right)\left(4-x\right)\ge0\Leftrightarrow-\frac{5}{2}\le x\le4\)

Vậy nghiệm của phương trình là \(-\frac{5}{2}\le x\le4\)

30 tháng 8 2019

Bạn ơi máy cái này tìm GTNN thì làm sao mà tìm được ! Đề bạn sai rồi ! Đây mình làm theo tìm GTLN nha !

Bài 1 :                                                   Bài giải

\(A=\frac{5}{7}-\left|3x-2\right|\)

A đạt GTLN khi \(\left|3x-2\right|\) đạt GTNN.

Mà \(\left|3x-2\right|\ge0\) Dấu " = " xảy ra khi \(3x-2=0\) \(\Rightarrow\text{ }3x=2\) \(\Rightarrow\text{ }x=\frac{2}{3}\)

\(\Rightarrow\text{ }\frac{5}{7}-\left|3x-2\right|\le0\)

Vậy Max \(\frac{5}{7}-\left|3x-2\right|=\frac{5}{7}\) khi \(x=\frac{2}{3}\)

31 tháng 8 2019

đề bài là 

tìm GTNN ,GTLN của các biểu thức 

28 tháng 8 2015

tự biên tự diễn thôi:

a/  gọi 2 số phải tìm là a và b, ta có a+b chia hết cho 3

ta có a^3+b^3=(a+b)(a^2-ab+b^2)=(a+b)[(a^2+2ab+b^2)-3ab]= (a+b)[(a+b)^2-3ab]0,5

vì a+b chia hết cho 3 nên (a+b)^2-3ab chia hết cho 3

do vậy (a+b)[(a+b)^2-3ab] chia hết cho 3

ai làm câu b