K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 6 2023

Lời giải:

a.

$|3x+1|=5$

$\Leftrightarrow 3x+1=\pm 5$

$\Leftrightarrow x=\frac{4}{3}$ hoặc $x=-2$

b.

$2|2x-3|=\frac{2}{5}$

$\Leftrightarrow |2x-3|=\frac{1}{5}$

$\Leftrightarrow 2x-3=\pm \frac{1}{5}$

$\Leftrightarrow x=\frac{8}{5}$ hoặc $x=\frac{7}{5}$

c.

$|2-3x|=|5-2x|$

$\Leftrightarrow 2-3x=5-2x$ hoặc $2-3x=2x-5$

$\Leftrightarrow x=-3$ hoặc $x=1,4$

 

19 tháng 6 2023

\(a,\left|3x+1\right|=5\)

\(\left|3x+1\right|=\left\{{}\begin{matrix}3x+1khix\ge-\dfrac{1}{3}\\-3x-1khix< -\dfrac{1}{3}\end{matrix}\right.\)

Với \(x\ge-\dfrac{1}{3}\Rightarrow3x+1=5\Rightarrow3x=4\Rightarrow x=\dfrac{4}{3}\left(tm\right)\)

Với \(x< -\dfrac{1}{3}\Rightarrow-3x-1=5\Rightarrow-3x=6\Rightarrow x=-2\left(tm\right)\)

Vậy \(S=\left\{-2;\dfrac{4}{3}\right\}\)

\(b,2\left|2x-3\right|=\dfrac{2}{5}\)

\(\Leftrightarrow\left|2x-3\right|=\dfrac{1}{5}\)

\(\left|2x-3\right|=\left\{{}\begin{matrix}2x-3khix\ge\dfrac{3}{2}\\-2x+3khix< \dfrac{3}{2}\end{matrix}\right.\)
Với \(x\ge\dfrac{3}{2}\Rightarrow2x-3=\dfrac{1}{5}\Rightarrow2x=\dfrac{16}{5}\Rightarrow x=\dfrac{8}{5}\left(tm\right)\)

Với \(x< \dfrac{3}{2}\Rightarrow-2x+3=\dfrac{1}{5}\Rightarrow-2x=-\dfrac{14}{5}\Rightarrow x=\dfrac{7}{5}\left(tm\right)\)

Vậy \(S=\left\{\dfrac{8}{5};\dfrac{7}{5}\right\}\)

\(c,\left|2-3x\right|=\left|5-2x\right|\)

\(\Leftrightarrow\left[{}\begin{matrix}2-3x=5-2x\\2-3x=-5+2x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=3\\-5x=-7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{7}{5}\end{matrix}\right.\)

Vậy \(S=\left\{-3;\dfrac{7}{5}\right\}\)

10 tháng 8 2023

Câu a) -3 phần 1/2 

10 tháng 8 2023

Câu a) 2 mũ 2

 

24 tháng 8 2021

b) (2x)^2 -1 - (3x)^2 + 4=-2

   -5x^2=1

   x^2=-1/5

x không tồn tại

11 tháng 7 2021

`a)|2x+1|=5`

`<=>` \(\left[ \begin{array}{l}2x+1=5\\2x+1=-5\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=4\\2x=-6\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=2\\x=-3\end{array} \right.\) 

`b)|2x+1|=0`

`<=>2x+1=0`

`<=>2x=-1`

`<=>x=-1/2`

`c)|2x+1|=7`

`<=>` \(\left[ \begin{array}{l}2x+1=7\\2x+1=-7\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=4\\x=-4\end{array} \right.\) 

`d)|2x+5|=|3x-7|`

`<=>` \(\left[ \begin{array}{l}2x+5=3x-7\\2x+5=7-3x\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\5x=2\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=12\\x=\dfrac25\end{array} \right.\) 

`e)|2x+7|=1`

`<=>` \(\left[ \begin{array}{l}2x+7=1\\2x+7=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}2x=-6\\2x=-8\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=3\\x=-4\end{array} \right.\) 

`g)|x-2|+|2x-3|=2`

Nếu `x>=2=>|x-2|=x-2,|2x-3|=2x-3`

`pt<=>x-2+2x-3=2`

`<=>3x-5=2`

`<=>3x=7`

`<=>x=7/3(tm)`

Nếu `x<=3/2=>|x-2|=2-x,|2x-3|=3-2x`

`pt<=>2-x+3-2x=2`

`<=>5-3x=2`

`<=>3x=3`

`<=>x=1(tm)`

Nếu `3/2<=x<=2=>|x-2|=2-x,|2x-3|=2x-3`

`pt<=>2-x+2x-3=2`

`<=>x-1=2`

`<=>x=3(l)`

`h)|x+2|+|1-x|=3x+2`

Vì `VT>=0=>3x+2>=0=>x>=-2/3`

`=>|x+2|=x+2`

`pt<=>x+2+|1-x|=3x+2`

`<=>|1-x|=2x(x>=0)`

`<=>` \(\left[ \begin{array}{l}2x=1-x\\2x=x-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}3x=1\\x=-1\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=\dfrac13(TM)\\x=-1(KTM)\end{array} \right.\) 

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

a.

$|2x+1|=5$
\(\Leftrightarrow \left[\begin{matrix} 2x+1=5\\ 2x+1=-5\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=2\\ x=-3\end{matrix}\right.\)

b.

$|2x+1|=0$

$\Leftrightarrow 2x+1=0$

$\Leftrightarrow x=-\frac{1}{2}$
c.

$|2x+1|=7$

\(\Leftrightarrow \left[\begin{matrix} 2x+1=7\\ 2x+1=-7\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=3\\ x=-4\end{matrix}\right.\)

 

13 tháng 4 2021

a, \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)

\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2;x=3;x=4\)

Vậy tập nghiệm phương trình là S = { 1 ; 2 ; 3 ; 4 } 

b, \(\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là S = { -2 ; 3 } 

c, \(\left|2x-1\right|=\left|x+5\right|\Leftrightarrow\left(2x-1\right)^2=\left(x+5\right)^2\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-1-x-5\right)\left(2x-1+x+5\right)=0\Leftrightarrow x=6;x=-\dfrac{4}{3}\)

Vậy tập nghiệm của phương trình là S = { -4/3 ; 6 } 

d, \(\left|3x+1\right|=x-2\)

TH1 : \(3x+1=x-2\Leftrightarrow2x=-3\Leftrightarrow x=-\dfrac{3}{2}\)

TH2 : \(3x+1=-x+2\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)

Vậy tập nghiệm của phương trình là S = { -3/2 ; 1/4 } 

các ý còn lại tương tự 

a) Ta có: \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)

\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\\x=1\\x=2\end{matrix}\right.\)

Vậy: S={3;4;1;2}

a: =>x^2-25-x^2-3x=10

=>-3x=35

=>x=-35/3

b: =>4x^2-9-4(x^2+4x+4)=5

=>4x^2-9-4x^2-16x-16-5=0

=>-16x-30=0

=>x=-15/8

c: =>9x^2+45x-9x^2+4=7

=>45x=3

=>x=1/15

d: =>x^3+3x^2+3x+1-x^3-3x^2+5x=8

=>8x=7

=>x=7/8

30 tháng 10 2023

\(2x^3+5c^3=2x^3+5x^3\)

\(7x^2\left(2x^3+3x^5\right)=7x^2\cdot2x^3+7x^2\cdot3x^5=14x^5+21x^7\)

\(\dfrac{\left(x^3y^2-2x^2-3x^3+xy^4\right)}{xy^2}\)

\(=\dfrac{xy^2\cdot x^2-x\cdot2x-x\cdot3x^2+xy^2\cdot y^2}{xy^2}\)
\(=x^2-\dfrac{2x}{y^2}-\dfrac{3x^2}{y^2}+y^2\)

29 tháng 10 2021

1. Thu gọn biểu thức - Hoc24 làm rồi mà bạn?

29 tháng 10 2021

1.

a) \(=x^2-6x+9+3x^2-15x=4x^2-21x+9\)

b) \(=9x^2+12x+4-x^2+9=8x^2+12x+13\)

2.

a) \(\Leftrightarrow x^2+8x+16-x^2+4-5=0\\ \Leftrightarrow8x=-15\\ \Leftrightarrow x=-\dfrac{15}{8}\)

b) \(\Leftrightarrow9x^2-6x+1-8x^2+12x-2x+3-5-x^2=0\\ \Leftrightarrow4x=1\\ \Leftrightarrow x=\dfrac{1}{4}\)

19 tháng 6 2021

a) đk: x khác 1; \(\dfrac{3}{2}\)

 \(P=\left[\dfrac{2x}{\left(2x-3\right)\left(x-1\right)}-\dfrac{5}{2x-3}\right]:\left(\dfrac{3-3x+2}{1-x}\right)\)

\(\dfrac{2x-5\left(x-1\right)}{\left(2x-3\right)\left(x-1\right)}:\dfrac{5-3x}{1-x}\)

\(\dfrac{-3x+5}{\left(2x-3\right)\left(x-1\right)}.\dfrac{1-x}{-3x+5}=\dfrac{-1}{2x-3}\)

b) Có \(\left|3x-2\right|+1=5\)

<=> \(\left|3x-2\right|=4\)

<=> \(\left[{}\begin{matrix}3x-2=4< =>x=2\left(Tm\right)\\3x-2=-4< =>x=\dfrac{-2}{3}\left(Tm\right)\end{matrix}\right.\)

TH1: Thay x = 2 vào P, ta có:

P = \(\dfrac{-1}{2.2-3}=-1\)

TH2: Thay x = \(\dfrac{-2}{3}\)vào P, ta có:

P = \(\dfrac{-1}{2.\dfrac{-2}{3}-3}=\dfrac{3}{13}\)

c) Để P > 0

<=> \(\dfrac{-1}{2x-3}>0\)

<=> 2x - 3 <0

<=> x < \(\dfrac{3}{2}\) ( x khác 1)

d) P = \(\dfrac{1}{6-x^2}\)

<=> \(\dfrac{-1}{2x-3}=\dfrac{1}{6-x^2}\)

<=> \(\dfrac{-1}{2x-3}=\dfrac{-1}{x^2-6}\)

<=> 2x - 3 = x2 - 6

<=> x2 - 2x - 3 = 0

<=> (x-3)(x+1) = 0

<=> \(\left[{}\begin{matrix}x=-1\left(Tm\right)\\x=3\left(Tm\right)\end{matrix}\right.\)