K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

\(A=\frac{n+1}{n-2}=\frac{n-2+2+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=2+\frac{3}{n-2}\)

Để A là số nguyên thì \(\frac{3}{n-2}\)là số nguyên 

\(\frac{3}{n-2}\)là 1 số nguyên khi và chỉ khi \(n-2\)là ước của 3

\(\Rightarrow n-2=\left(-1;1;-3;3\right)\)

\(n-2=1\Rightarrow n=1+2=3\)

\(n-2=\left(-1\right)\Rightarrow n=\left(-1\right)+2=1\)

\(n-2=3\Rightarrow n=3+2=5\)

\(n-2=\left(-3\right)\Rightarrow n=\left(-3\right)+2=\left(-1\right)\)

Vậy \(n\)là \(3;1;5;\left(-1\right)\)để A là phân số 

19 tháng 5 2017

Xin lổi 

Để A là giá trị lớn nhất nhé ! nhưng vẩn nhớ k cho tớ nhé 

a) Để A có giá trị nguyên thì \(n-5⋮n+1\)

\(\Leftrightarrow n+1-6⋮n+1\)

mà \(n+1⋮n+1\)

nên \(-6⋮n+1\)

\(\Leftrightarrow n+1\inƯ\left(-6\right)\)

\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)

b)

Ta có: \(A=\dfrac{n-5}{n+1}\)

\(=\dfrac{n+1-6}{n+1}\)

\(=1-\dfrac{6}{n+1}\)

Để A là phân số tối giản thì ƯCLN(n-5;n+1)=1

\(\LeftrightarrowƯCLN\left(6;n+1\right)=1\)

\(\Leftrightarrow n+1⋮̸6\)

\(\Leftrightarrow n+1\ne6k\left(k\in N\right)\)

\(\Leftrightarrow n\ne6k-1\left(k\in N\right)\)

Vậy: Khi \(n\ne6k-1\left(k\in N\right)\) thì A là phân số tối giản

19 tháng 3 2018

\(b)\) Ta có : 

\(A=\frac{6n-1}{3n+2}=2-\frac{5}{3n+2}\) ( câu a mình đã phân tích rồi nên khỏi phân tích lại ) 

Để A đạt GTNN thì \(\frac{5}{3n+2}\) phải đạt GTLN hay nói cách khác \(3n+2>0\) và đạt GTNN

\(\Rightarrow\)\(3n+2=1\)

\(\Rightarrow\)\(3n=-1\)

\(\Rightarrow\)\(n=\frac{-1}{3}\) ( loại vì \(n\inℤ\) ) 

\(\Rightarrow\)\(3n+2=2\)

\(\Rightarrow\)\(3n=0\)

\(\Rightarrow\)\(n=0\)

Suy ra : \(A=2-\frac{5}{3n+2}=2-\frac{5}{3.0+2}=2-\frac{5}{2}=\frac{-1}{2}\)

Vậy \(A_{min}=\frac{-1}{3}\) khi \(n=0\)

Chúc bạn học tốt ~ 

19 tháng 3 2018

\(a)\) Ta có : 

\(\frac{6n-1}{3n+2}=\frac{6n+4-5}{3n+2}=\frac{6n+4}{3n+2}-\frac{5}{3n+2}=\frac{2\left(3n+2\right)}{3n+2}-\frac{5}{3n+2}=2-\frac{5}{3n+2}\)

Để \(A\inℤ\)  thì \(\frac{5}{3n+2}\inℤ\)\(\Rightarrow\)\(5⋮\left(3n+2\right)\)\(\Rightarrow\)\(\left(3n+2\right)\inƯ\left(5\right)\)

Mà \(Ư\left(5\right)=\left\{1;-1;5;-5\right\}\)

Suy ra : 

\(3n+2\)\(1\)\(-1\)\(5\)\(-5\)
\(n\)\(\frac{-1}{3}\)\(-1\)\(1\)\(\frac{-7}{3}\)

Mà \(n\inℤ\) nên \(n\in\left\{-1;1\right\}\)

Vậy \(n=1\) hoặc \(n=-1\)

Chúc bạn học tốt ~ 

22 tháng 7 2021

a, Để A là phân số khi n - 3 \(\ne\)0<=> n \(\ne\)3

b, Để A nguyên khi \(n+1⋮n-3\Leftrightarrow n-3+4⋮n-3\Leftrightarrow4⋮n-3\)

\(\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n - 31-12-24-4
n42517-1

 

a) Để A là phân số thì \(n-3\ne0\)

hay \(n\ne3\)

b) Để A là số nguyên thì \(n+1⋮n-3\)

\(\Leftrightarrow4⋮n-3\)

\(\Leftrightarrow n-3\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(n\in\left\{4;2;5;1;7;-1\right\}\)

20 tháng 2 2018

\(A=\frac{n+1}{n-2}\)

\(A=\frac{n-2+3}{n-2}\)

\(A=1+\frac{3}{n-2}\)

\(\Leftrightarrow n-2\inƯ\left(3\right)\)

\(\Leftrightarrow n-2\in\left\{\pm1;\pm3\right\}\)

đến đây lập bảng là xong

3 tháng 3 2017

Để A là số nguyên thì n + 1 chia hết n - 2

<=> n - 2 + 3 chia hết cho n - 2

=> 3 chia hết cho n - 2

=> n - 2 thuộc Ư(3) = {-3;-1;1;3}

=> n = {-1;1;3;5}

3 tháng 3 2017

Để A là số nguyên thì n + 1 chia hết cho n - 2 

=> n - 2 + 3 chia hết cho n - 2 

=> 3 chia hết cho n - 2 

=> n - 2 thuộc Ư(3) = {-3;-1;1;3}

=> n = {-1;1;3;5}

NA
Ngoc Anh Thai
Giáo viên
11 tháng 4 2021

a) 

\(A=\dfrac{2x+3}{x-2}=\dfrac{2\left(x-2\right)+7}{x-2}=2+\dfrac{7}{x-2}\)

Vì x nguyên nên để A có giá trị nguyên thì \(\dfrac{7}{x-2}\) có giá trị nguyên

Khi đó x - 2 ∈ Ư(7) = {-7; -1; 1; 7}

   x-2     -7     -1     1      7
    x     -5      1     2      9

Vậy x ∈ {-5; 1; 2; 9}.